Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chemical reactivity under nanoconfinement

Abstract

Confining molecules can fundamentally change their chemical and physical properties. Confinement effects are considered instrumental at various stages of the origins of life, and life continues to rely on layers of compartmentalization to maintain an out-of-equilibrium state and efficiently synthesize complex biomolecules under mild conditions. As interest in synthetic confined systems grows, we are realizing that the principles governing reactivity under confinement are the same in abiological systems as they are in nature. In this Review, we categorize the ways in which nanoconfinement effects impact chemical reactivity in synthetic systems. Under nanoconfinement, chemical properties can be modulated to increase reaction rates, enhance selectivity and stabilize reactive species. Confinement effects also lead to changes in physical properties. The fluorescence of light emitters, the colours of dyes and electronic communication between electroactive species can all be tuned under confinement. Within each of these categories, we elucidate design principles and strategies that are widely applicable across a range of confined systems, specifically highlighting examples of different nanocompartments that influence reactivity in similar ways.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Illustrative examples of diverse confined systems.
Fig. 2: Principles guiding the acceleration of chemical reactions under confinement.
Fig. 3: Principles guiding the enhancement or alteration of selectivity under confinement.
Fig. 4: Principles guiding the stabilization of reactive species or unstable assemblies under confinement.
Fig. 5: Strategies for modulating light emission under confinement.
Fig. 6: Strategies for modulating electrochemical properties under confinement.

References

  1. 1.

    Mann, S. The origins of life: Old problems, new chemistries. Angew. Chem. Int. Ed. 52, 155–162 (2013).

    CAS  Google Scholar 

  2. 2.

    Muñoz-Santiburcio, D. & Marx, D. Chemistry in nanoconfined water. Chem. Sci. 8, 3444–3452 (2017).

    Google Scholar 

  3. 3.

    Lambert, J. B., Gurusamy-Thangavelu, S. A. & Ma, K. The silicate-mediated formose reaction: Bottom-up synthesis of sugar silicates. Science 327, 984–986 (2010).

    CAS  Google Scholar 

  4. 4.

    Ohara, S., Kakegawa, T. & Nakazawa, H. Pressure effects on the abiotic polymerization of glycine. Orig. Life Evol. Biosph. 37, 215–223 (2007).

    CAS  Google Scholar 

  5. 5.

    Hansma, H. G. The power of crowding for the origins of life. Orig. Life Evol. Biosph. 44, 307–311 (2014).

    CAS  Google Scholar 

  6. 6.

    Dzieciol, A. J. & Mann, S. Designs for life: Protocell models in the laboratory. Chem. Soc. Rev. 41, 79–85 (2012).

    CAS  Google Scholar 

  7. 7.

    Koga, S., Williams, D. S., Perriman, A. W. & Mann, S. Peptide–nucleotide microdroplets as a step towards a membrane-free protocell model. Nat. Chem. 3, 720–724 (2011).

    CAS  Google Scholar 

  8. 8.

    Szostak, J. W., Bartel, D. P. & Luisi, P. L. Synthesizing life. Nature 409, 387–390 (2001).

    CAS  Google Scholar 

  9. 9.

    Urban, P. L. Compartmentalised chemistry: From studies on the origin of life to engineered biochemical systems. New J. Chem. 38, 5135–5141 (2014).

    CAS  Google Scholar 

  10. 10.

    Zhou, H.-X. & Dill, K. A. Stabilization of proteins in confined spaces. Biochemistry 40, 11289–11293 (2001).

    CAS  Google Scholar 

  11. 11.

    Panganiban, B. et al. Random heteropolymers preserve protein function in foreign environments. Science 359, 1239–1243 (2018).

    CAS  Google Scholar 

  12. 12.

    Saibil, H. Chaperone machines for protein folding, unfolding and disaggregation. Nat. Rev. Mol. Cell Biol. 14, 630–642 (2013).

    CAS  Google Scholar 

  13. 13.

    Pieters, B. J. G. E., van Eldijk, M. B., Nolte, R. J. M. & Mecinović, J. Natural supramolecular protein assemblies. Chem. Soc. Rev. 45, 24–39 (2016).

    CAS  Google Scholar 

  14. 14.

    Tripp, B. C., Smith, K. & Ferry, J. G. Carbonic anhydrase: New insights for an ancient enzyme. J. Biol. Chem. 276, 48615–48618 (2001).

    CAS  Google Scholar 

  15. 15.

    Shichida, Y. & Matsuyama, T. Evolution of opsins and phototransduction. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 364, 2881–2895 (2009).

    CAS  Google Scholar 

  16. 16.

    Dutta, S. et al. Structure of a modular polyketide synthase. Nature 510, 512–517 (2014).

    CAS  Google Scholar 

  17. 17.

    Kartal, B. et al. Molecular mechanism of anaerobic ammonium oxidation. Nature 479, 127–130 (2011).

    CAS  Google Scholar 

  18. 18.

    Yan, L. et al. Magnetotactic bacteria, magnetosomes and their application. Microbiol. Res. 167, 507–519 (2012).

    CAS  Google Scholar 

  19. 19.

    Aizenberg, J., Tkachenko, A., Weiner, S., Addadi, L. & Hendler, G. Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature 412, 819–822 (2001).

    CAS  Google Scholar 

  20. 20.

    Grzybowski, B. A. & Huck, W. T. S. The nanotechnology of life-inspired systems. Nat. Nanotechnol. 11, 585–592 (2016).

    CAS  Google Scholar 

  21. 21.

    Yoshizawa, M., Klosterman, J. K. & Fujita, M. Functional molecular flasks: New properties and reactions within discrete, self-assembled hosts. Angew. Chem. Int. Ed. 48, 3418–3438 (2009).

    CAS  Google Scholar 

  22. 22.

    Inokuma, Y., Kawano, M. & Fujita, M. Crystalline molecular flasks. Nat. Chem. 3, 349–358 (2011).

    CAS  Google Scholar 

  23. 23.

    Fujita, M. et al. Self-assembly of ten molecules into nanometre-sized organic host frameworks. Nature 378, 469–471 (1995).

    CAS  Google Scholar 

  24. 24.

    Fujita, D. et al. Self-assembly of tetravalent Goldberg polyhedra from 144 small components. Nature 540, 563–566 (2016).

    CAS  Google Scholar 

  25. 25.

    Cook, T. R. & Stang, P. J. Recent developments in the preparation and chemistry of metallacycles and metallacages via coordination. Chem. Rev. 115, 7001–7045 (2015).

    CAS  Google Scholar 

  26. 26.

    Rebek, J. Molecular behavior in small spaces. Acc. Chem. Res. 42, 1660–1668 (2009).

    CAS  Google Scholar 

  27. 27.

    Liu, L. J. & Rebek, J. in Hydrogen Bonded Supramolecular Structures (eds Li, Z.-T. & Wu, L.-Z.) 227–248 (Springer, 2015).

  28. 28.

    Aumiller, W. M., Uchida, M. & Douglas, T. Protein cage assembly across multiple length scales. Chem. Soc. Rev. 47, 3433–3469 (2018).

    CAS  Google Scholar 

  29. 29.

    Bode, S. A., Minten, I. J., Nolte, R. J. M. & Cornelissen, J. J. L. M. Reactions inside nanoscale protein cages. Nanoscale 3, 2376–2389 (2011).

    CAS  Google Scholar 

  30. 30.

    Jiang, J., Zhao, Y. & Yaghi, O. M. Covalent chemistry beyond molecules. J. Am. Chem. Soc. 138, 3255–3265 (2016).

    CAS  Google Scholar 

  31. 31.

    Babu, H. V., Bai, M. G. M. & Rajeswara Rao, M. Functional π-conjugated two-dimensional covalent organic frameworks. ACS Appl. Mater. Interfaces 11, 11029–11060 (2019).

    CAS  Google Scholar 

  32. 32.

    Wang, H., Wang, Y., Shen, B., Liu, X. & Lee, M. Substrate-driven transient self-assembly and spontaneous disassembly directed by chemical reaction with product release. J. Am. Chem. Soc. 141, 4182–4185 (2019). Unique example in which substrates drive the self-assembly of a lipid bilayer, which serves as a confined environment for reaction acceleration; the lipid bilayer then disassembles upon product formation.

    CAS  Google Scholar 

  33. 33.

    Zhao, H. et al. Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks. Nat. Nanotechnol. 11, 82–88 (2015). Empty space between nanoparticles within aggregates is shown to serve as a confined environment for reaction acceleration; guest encapsulation and release can be controlled by the reversible assembly of nanoparticle aggregates.

    Google Scholar 

  34. 34.

    Fu, Q. & Bao, X. Surface chemistry and catalysis confined under two-dimensional materials. Chem. Soc. Rev. 46, 1842–1874 (2017).

    CAS  Google Scholar 

  35. 35.

    Goronzy, D. P. et al. Supramolecular assemblies on surfaces: Nanopatterning, functionality, and reactivity. ACS Nano 12, 7445–7481 (2018).

    CAS  Google Scholar 

  36. 36.

    Poli, R. (ed) Effects of Nanoconfinement on Catalysis (Springer, 2017).

  37. 37.

    Brown, C. J., Toste, F. D., Bergman, R. G. & Raymond, K. N. Supramolecular catalysis in metal–ligand cluster hosts. Chem. Rev. 115, 3012–3035 (2015).

    CAS  Google Scholar 

  38. 38.

    Mouarrawis, V., Plessius, R., van der Vlugt, J. I. & Reek, J. N. H. Confinement effects in catalysis using well-defined materials and cages. Front. Chem. 6, 623 (2018).

    CAS  Google Scholar 

  39. 39.

    Leenders, S. H. A. M., Gramage-Doria, R., de Bruin, B. & Reek, J. N. H. Transition metal catalysis in confined spaces. Chem. Soc. Rev. 44, 433–448 (2015).

    CAS  Google Scholar 

  40. 40.

    Liu, X. & Dai, L. Carbon-based metal-free catalysts. Nat. Rev. Mater. 1, 16064 (2016).

    CAS  Google Scholar 

  41. 41.

    Pascanu, V., González Miera, G., Inge, A. K. & Martín-Matute, B. Metal–organic frameworks as catalysts for organic synthesis: A critical perspective. J. Am. Chem. Soc. 141, 7223–7234 (2019).

    CAS  Google Scholar 

  42. 42.

    Ennaert, T. et al. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chem. Soc. Rev. 45, 584–611 (2016).

    CAS  Google Scholar 

  43. 43.

    Turro, N. J., Kraeutler, B. & Anderson, D. R. Magnetic and micellar effects on photoreactions. Micellar cage and magnetic isotope effects on quantum yields. Correlation of 13C enrichment parameters with quantum yield measurements. J. Am. Chem. Soc. 101, 7435–7437 (1979).

    CAS  Google Scholar 

  44. 44.

    Turro, N. J. Micelles, magnets and molecular mechanisms. Application to cage effects and isotope separation. Pure Appl. Chem. 53, 259–286 (1981).

    CAS  Google Scholar 

  45. 45.

    Fendler, J. H. & Fendler, E. J. Catalysis in Micellar and Macromoleular Systems (Academic Press, 1975).

  46. 46.

    Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97, 2373–2420 (1997).

    CAS  Google Scholar 

  47. 47.

    Vispute, T. P., Zhang, H., Sanna, A., Xiao, R. & Huber, G. W. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science 330, 1222–1227 (2010).

    CAS  Google Scholar 

  48. 48.

    Vogt, E. T. C. & Weckhuysen, B. M. Fluid catalytic cracking: Recent developments on the grand old lady of zeolite catalysis. Chem. Soc. Rev. 44, 7342–7370 (2015).

    CAS  Google Scholar 

  49. 49.

    Gao, P. et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat. Chem. 9, 1019–1024 (2017).

    CAS  Google Scholar 

  50. 50.

    Snyder, B. E. R. et al. The active site of low-temperature methane hydroxylation in iron-containing zeolites. Nature 536, 317–321 (2016).

    CAS  Google Scholar 

  51. 51.

    Shan, J., Li, M., Allard, L. F., Lee, S. & Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 551, 605–608 (2017).

    CAS  Google Scholar 

  52. 52.

    Morejudo, S. H. et al. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science 353, 563–566 (2016).

    CAS  Google Scholar 

  53. 53.

    Gao, J. et al. Identification of molybdenum oxide nanostructures on zeolites for natural gas conversion. Science 348, 686–690 (2015).

    CAS  Google Scholar 

  54. 54.

    Beale, A. M., Gao, F., Lezcano-Gonzalez, I., Peden, C. H. F. & Szanyi, J. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chem. Soc. Rev. 44, 7371–7405 (2015).

    CAS  Google Scholar 

  55. 55.

    Zhang, R., Liu, N., Lei, Z. & Chen, B. Selective transformation of various nitrogen-containing exhaust gases toward N2 over zeolite catalysts. Chem. Rev. 116, 3658–3721 (2016).

    CAS  Google Scholar 

  56. 56.

    Paolucci, C. et al. Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction. Science 357, 898–903 (2017).

    CAS  Google Scholar 

  57. 57.

    Lee, J. K., Samanta, D., Nam, H. G. & Zare, R. N. Micrometer-sized water droplets induce spontaneous reduction. J. Am. Chem. Soc. 141, 10585–10589 (2019). Organic compounds are catalytically reduced under confinement on the inner surface of water microdroplets, demonstrating how similar reactions may have proceeded in the prebiotic era.

    CAS  Google Scholar 

  58. 58.

    Fallah-Araghi, A. et al. Enhanced chemical synthesis at soft interfaces: A universal reaction-adsorption mechanism in microcompartments. Phys. Rev. Lett. 112, 28301 (2014).

    Google Scholar 

  59. 59.

    Wang, Y. et al. Host–guest chemistry with water-soluble gold nanoparticle supraspheres. Nat. Nanotechnol. 12, 170–176 (2016).

    Google Scholar 

  60. 60.

    Nishioka, Y., Yamaguchi, T., Yoshizawa, M. & Fujita, M. Unusual [2+4] and [2+2] cycloadditions of arenes in the confined cavity of self-assembled cages. J. Am. Chem. Soc. 129, 7000–7001 (2007).

    CAS  Google Scholar 

  61. 61.

    Kang, J. & Rebek, J. Acceleration of a Diels–Alder reaction by a self-assembled molecular capsule. Nature 385, 50–52 (1997).

    CAS  Google Scholar 

  62. 62.

    Taguchi, T., Isozaki, K. & Miki, K. Enhanced catalytic activity of self-assembled-monolayer-capped gold nanoparticles. Adv. Mater. 24, 6462–6467 (2012). Unique example in which silane alcoholysis is accelerated under confinement within a hydrophobic pocket formed between alkanethiol ligands on gold nanoparticles.

    CAS  Google Scholar 

  63. 63.

    Sawano, T. et al. Metal–organic frameworks stabilize mono(phosphine)–metal complexes for broad-scope catalytic reactions. J. Am. Chem. Soc. 138, 9783–9786 (2016).

    CAS  Google Scholar 

  64. 64.

    Roberts, J. M. et al. Urea metal–organic frameworks as effective and size-selective hydrogen-bond catalysts. J. Am. Chem. Soc. 134, 3334–3337 (2012).

    CAS  Google Scholar 

  65. 65.

    Ikbal, S. A. et al. Bioinspired oxidation of methane in the confined spaces of molecular cages. Inorg. Chem. 58, 7220–7228 (2019).

    CAS  Google Scholar 

  66. 66.

    Feng, X. et al. Metal-organic framework stabilizes a low-coordinate iridium complex for catalytic methane borylation. J. Am. Chem. Soc. 141, 11196–11203 (2019).

    CAS  Google Scholar 

  67. 67.

    Zhang, D. et al. Tailored oxido-vanadium(V) cage complexes for selective sulfoxidation in confined spaces. Chem. Sci. 8, 789–794 (2017).

    CAS  Google Scholar 

  68. 68.

    Chen, S. et al. A metal-organic cage incorporating multiple light harvesting and catalytic centres for photochemical hydrogen production. Nat. Commun. 7, 13169 (2016).

    CAS  Google Scholar 

  69. 69.

    Gramage-Doria, R. et al. Gold(I) catalysis at extreme concentrations inside self-assembled nanospheres. Angew. Chem. Int. Ed. 53, 13380–13384 (2014).

    CAS  Google Scholar 

  70. 70.

    Wu, S. et al. Supramolecular nanotubules as a catalytic regulator for palladium cations: Applications in selective catalysis. Angew. Chem. Int. Ed. 56, 11511–11514 (2017).

    CAS  Google Scholar 

  71. 71.

    Kohyama, Y., Murase, T. & Fujita, M. Metal–organic proximity in a synthetic pocket. J. Am. Chem. Soc. 136, 2966–2969 (2014).

    CAS  Google Scholar 

  72. 72.

    Pan, X. & Bao, X. The effects of confinement inside carbon nanotubes on catalysis. Acc. Chem. Res. 44, 553–562 (2011).

    CAS  Google Scholar 

  73. 73.

    Xiao, J., Pan, X., Guo, S., Ren, P. & Bao, X. Toward fundamentals of confined catalysis in carbon nanotubes. J. Am. Chem. Soc. 137, 477–482 (2015).

    CAS  Google Scholar 

  74. 74.

    Serp, P. & Castillejos, E. Catalysis in carbon nanotubes. ChemCatChem 2, 41–47 (2010).

    CAS  Google Scholar 

  75. 75.

    Woese, C. The Genetic Code: The Molecular Basis for Genetic Expression (Harper & Row, 1967).

  76. 76.

    Fang, Y. et al. Bimolecular proximity of a ruthenium complex and methylene blue within an anionic porous coordination cage for enhancing photocatalytic activity. Chem. Sci. 10, 3529–3534 (2019).

    CAS  Google Scholar 

  77. 77.

    Cullen, W., Misuraca, M. C., Hunter, C. A., Williams, N. H. & Ward, M. D. Highly efficient catalysis of the Kemp elimination in the cavity of a cubic coordination cage. Nat. Chem. 8, 231–236 (2016).

    CAS  Google Scholar 

  78. 78.

    Cullen, W. et al. Catalysis in a cationic coordination cage using a cavity-bound guest and surface-bound anions: Inhibition, activation, and autocatalysis. J. Am. Chem. Soc. 140, 2821–2828 (2018).

    CAS  Google Scholar 

  79. 79.

    Wang, Q.-Q. et al. Self-assembled nanospheres with multiple endohedral binding sites pre-organize catalysts and substrates for highly efficient reactions. Nat. Chem. 8, 225–230 (2016).

    CAS  Google Scholar 

  80. 80.

    Pordea, A. et al. Artificial metalloenzyme for enantioselective sulfoxidation based on vanadyl-loaded streptavidin. J. Am. Chem. Soc. 130, 8085–8088 (2008).

    CAS  Google Scholar 

  81. 81.

    Chu, Z. et al. Supramolecular control of azobenzene switching on nanoparticles. J. Am. Chem. Soc. 141, 1949–1960 (2019).

    CAS  Google Scholar 

  82. 82.

    Palma, A. et al. Cucurbit[7]uril as a supramolecular artificial enzyme for Diels–Alder reactions. Angew. Chem. Int. Ed. 129, 15894–15898 (2017).

    Google Scholar 

  83. 83.

    Yu, Y. & Rebek, J. Reactions of folded molecules in water. Acc. Chem. Res. 51, 3031–3040 (2018).

    CAS  Google Scholar 

  84. 84.

    Wang, K. et al. Electrostatic control of macrocyclization reactions within nanospaces. J. Am. Chem. Soc. 141, 6740–6747 (2019).

    CAS  Google Scholar 

  85. 85.

    Mosca, S., Yu, Y., Gavette, J. V., Zhang, K.-D. & Rebek, J. A deep cavitand templates lactam formation in water. J. Am. Chem. Soc. 137, 14582–14585 (2015).

    CAS  Google Scholar 

  86. 86.

    Shi, Q., Masseroni, D. & Rebek, J. Macrocyclization of folded diamines in cavitands. J. Am. Chem. Soc. 138, 10846–10848 (2016).

    CAS  Google Scholar 

  87. 87.

    Wu, N.-W. & Rebek, J. Cavitands as chaperones for monofunctional and ring-forming reactions in water. J. Am. Chem. Soc. 138, 7512–7515 (2016).

    CAS  Google Scholar 

  88. 88.

    Zhang, Q. & Tiefenbacher, K. Terpene cyclization catalysed inside a self-assembled cavity. Nat. Chem. 7, 197–202 (2015). Flexible terpene molecules are pre-organized into a folded state under confinement, facilitating the catalytic conversion of these linear substrates into cyclic terpenes.

    CAS  Google Scholar 

  89. 89.

    Hooley, R. J. Taking on the turnover challenge. Nat. Chem. 8, 202–204 (2016).

    CAS  Google Scholar 

  90. 90.

    Hooley, R. J. & Rebek, J. A deep cavitand catalyzes the Diels–Alder reaction of bound maleimides. Org. Biomol. Chem. 5, 3631–3636 (2007).

    CAS  Google Scholar 

  91. 91.

    Yoshizawa, M., Tamura, M. & Fujita, M. Diels-Alder in aqueous molecular hosts: Unusual regioselectivity and efficient catalysis. Science 312, 251–254 (2006).

    CAS  Google Scholar 

  92. 92.

    Pluth, M. D., Bergman, R. G. & Raymond, K. N. Acid catalysis in basic solution: A supramolecular host promotes orthoformate hydrolysis. Science 316, 85–88 (2007).

    CAS  Google Scholar 

  93. 93.

    Fiedler, D., Bergman, R. G. & Raymond, K. N. Supramolecular catalysis of a unimolecular transformation: Aza-Cope rearrangement within a self-assembled host. Angew. Chem. Int. Ed. 43, 6748–6751 (2004).

    CAS  Google Scholar 

  94. 94.

    Fiedler, D., van Halbeek, H., Bergman, R. G. & Raymond, K. N. Supramolecular catalysis of unimolecular rearrangements: Substrate scope and mechanistic insights. J. Am. Chem. Soc. 128, 10240–10252 (2006).

    CAS  Google Scholar 

  95. 95.

    Hastings, C. J., Fiedler, D., Bergman, R. G. & Raymond, K. N. Aza Cope rearrangement of propargyl enammonium cations catalyzed by a self-assembled “nanozyme”. J. Am. Chem. Soc. 130, 10977–10983 (2008).

    CAS  Google Scholar 

  96. 96.

    Dinca, L. E. et al. Unprecedented transformation of tetrathienoanthracene into pentacene on Ni(111). ACS Nano 7, 1652–1657 (2013).

    CAS  Google Scholar 

  97. 97.

    de Oteyza, D. G. et al. Direct imaging of covalent bond structure in single-molecule chemical reactions. Science 340, 1434–1437 (2013).

    CAS  Google Scholar 

  98. 98.

    Vidal, D., Olivo, G. & Costas, M. Controlling selectivity in aliphatic C−H oxidation through supramolecular recognition. Chem. Eur. J. 24, 5042–5054 (2018).

    CAS  Google Scholar 

  99. 99.

    Wang, C. et al. Product selectivity controlled by nanoporous environments in zeolite crystals enveloping rhodium nanoparticle catalysts for CO2 hydrogenation. J. Am. Chem. Soc. 141, 8482–8488 (2019).

    CAS  Google Scholar 

  100. 100.

    Mochizuki, S., Kitao, T. & Uemura, T. Controlled polymerizations using metal–organic frameworks. Chem. Commun. 54, 11843–11856 (2018).

    CAS  Google Scholar 

  101. 101.

    Tu, M. et al. Reversible optical writing and data storage in an anthracene-loaded metal–organic framework. Angew. Chem. Int. Ed. 58, 2423–2427 (2019). Confinement of four anthracene molecules within a single cavity leads to selective photodimerization of only two anthracene molecules because of steric restraints.

    CAS  Google Scholar 

  102. 102.

    Yoshizawa, M., Takeyama, Y., Okano, T. & Fujita, M. Cavity-directed synthesis within a self-assembled coordination cage: Highly selective [2 + 2] cross-photodimerization of olefins. J. Am. Chem. Soc. 125, 3243–3247 (2003).

    CAS  Google Scholar 

  103. 103.

    Ko, S. H. et al. Nanocage-confined synthesis of fluorescent polycyclic aromatic hydrocarbons in zeolite. J. Am. Chem. Soc. 140, 7101–7107 (2018).

    CAS  Google Scholar 

  104. 104.

    Abedin, M. J., Liepold, L., Suci, P., Young, M. & Douglas, T. Synthesis of a cross-linked branched polymer network in the interior of a protein cage. J. Am. Chem. Soc. 131, 4346–4354 (2009).

    CAS  Google Scholar 

  105. 105.

    Knossalla, J. et al. Shape-controlled nanoparticles in pore-confined space. J. Am. Chem. Soc. 140, 15684–15689 (2018).

    CAS  Google Scholar 

  106. 106.

    Suzuki, K., Sato, S. & Fujita, M. Template synthesis of precisely monodisperse silica nanoparticles within self-assembled organometallic spheres. Nat. Chem. 2, 25–29 (2009).

    Google Scholar 

  107. 107.

    Xu, Y.-T. et al. Cage-confinement pyrolysis route to ultrasmall tungsten carbide nanoparticles for efficient electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 139, 5285–5288 (2017).

    CAS  Google Scholar 

  108. 108.

    Meldrum, F. C., Wade, V. J., Nimmo, D. L., Heywood, B. R. & Mann, S. Synthesis of inorganic nanophase materials in supramolecular protein cages. Nature 349, 684–687 (1991).

    CAS  Google Scholar 

  109. 109.

    Allen, M., Willits, D., Mosolf, J., Young, M. & Douglas, T. Protein cage constrained synthesis of ferrimagnetic iron oxide nanoparticles. Adv. Mater. 14, 1562–1565 (2002).

    CAS  Google Scholar 

  110. 110.

    Douglas, T. et al. Protein engineering of a viral cage for constrained nanomaterials synthesis. Adv. Mater. 14, 415–418 (2002).

    CAS  Google Scholar 

  111. 111.

    Kramer, R. M., Li, C., Carter, D. C., Stone, M. O. & Naik, R. R. Engineered protein cages for nanomaterial synthesis. J. Am. Chem. Soc. 126, 13282–13286 (2004).

    CAS  Google Scholar 

  112. 112.

    Ramamurthy, V. & Turro, N. J. Photochemistry of organic molecules within zeolites: Role of cations. J. Incl. Phenom. Mol. Recognit. Chem. 21, 239–282 (1995).

    CAS  Google Scholar 

  113. 113.

    Turro, N. J. & Wan, P. Photochemistry of phenyl alkyl ketones adsorbed on zeolite molecular sieves. Observation of pronounced effects on type I/type II photochemistry. Tetrahedron Lett. 25, 3655–3658 (1984).

    CAS  Google Scholar 

  114. 114.

    Sivaguru, J. et al. Control of chirality by cations in confined spaces: Photooxidation of enecarbamates inside zeolite supercages. Photochem. Photobiol. 82, 123–131 (2006).

    CAS  Google Scholar 

  115. 115.

    Turro, N. J., Cheng, C. C., Lei, X. G. & Flanigen, E. M. Size and selectivity of zeolite chemistry. A remarkable effect of additive on the products produced in the photolyses of ketones. J. Am. Chem. Soc. 107, 3739–3741 (1985).

    CAS  Google Scholar 

  116. 116.

    Dusselier, M., Van Wouwe, P., Dewaele, A., Jacobs, P. A. & Sels, B. F. Shape-selective zeolite catalysis for bioplastics production. Science 349, 78–80 (2015). Shape-selectivity under confinement allows stereoselective conversion of l-lactic acid to (l,l)-lactide in near-quantitative yields, surpassing the industrial state-of-the-art.

    CAS  Google Scholar 

  117. 117.

    Nakae, T. et al. Iron and ruthenium nanoparticles in carbon prepared by thermolysis of buckymetallocenes. Chem. Asian J. 4, 457–465 (2009).

    CAS  Google Scholar 

  118. 118.

    Nakamura, E. et al. Electron microscopic imaging of a single group 8 metal atom catalyzing C–C bond reorganization of fullerenes. J. Am. Chem. Soc. 133, 14151–14153 (2011). Electron microscopy is used to monitor how confinement within carbon nanotubes facilitates the selective rearrangement of fullerenes, catalysed by Ru or Fe.

    CAS  Google Scholar 

  119. 119.

    Koshino, M. et al. Analysis of the reactivity and selectivity of fullerene dimerization reactions at the atomic level. Nat. Chem. 2, 117–124 (2010).

    CAS  Google Scholar 

  120. 120.

    Yoshizawa, M., Takeyama, Y., Kusukawa, T. & Fujita, M. Cavity-directed, highly stereoselective [2+2] photodimerization of olefins within self-assembled coordination cages. Angew. Chem. Int. Ed. 41, 1347–1349 (2002).

    CAS  Google Scholar 

  121. 121.

    Han, Q. et al. Engineering chiral polyoxometalate hybrid metal–organic frameworks for asymmetric dihydroxylation of olefins. J. Am. Chem. Soc. 135, 10186–10189 (2013).

    CAS  Google Scholar 

  122. 122.

    Gong, W. et al. Permanent porous hydrogen-bonded frameworks with two types of Brønsted acid sites for heterogeneous asymmetric catalysis. Nat. Commun. 10, 600 (2019).

    CAS  Google Scholar 

  123. 123.

    Xu, H., Gao, J. & Jiang, D. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat. Chem. 7, 905–912 (2015).

    CAS  Google Scholar 

  124. 124.

    Kim, M. et al. Creating favorable geometries for directing organic photoreactions in alkanethiolate monolayers. Science 331, 1312–1315 (2011).

    CAS  Google Scholar 

  125. 125.

    Zheng, Y. B. et al. Surface-enhanced Raman spectroscopy to probe photoreaction pathways and kinetics of isolated reactants on surfaces: Flat versus curved substrates. Nano Lett. 12, 5362–5368 (2012).

    CAS  Google Scholar 

  126. 126.

    Zdobinsky, T., Maiti, P. S. & Klajn, R. Support curvature and conformational freedom control chemical reactivity of immobilized species. J. Am. Chem. Soc. 136, 2711–2714 (2014).

    Google Scholar 

  127. 127.

    Trinh, T. et al. DNA-imprinted polymer nanoparticles with monodispersity and prescribed DNA-strand patterns. Nat. Chem. 10, 184–192 (2017).

    Google Scholar 

  128. 128.

    Zhou, T.-Y., Auer, B., Lee, S. J. & Telfer, S. G. Catalysts confined in programmed framework pores enable new transformations and tune reaction efficiency and selectivity. J. Am. Chem. Soc. 141, 1577–1582 (2019). Rational design of a MOF cavity that allows the reactivity and selectivity of aldol and Henry reactions to be tuned orthogonally.

    CAS  Google Scholar 

  129. 129.

    Chen, X., Wang, Y., Wang, H., Kim, Y. & Lee, M. α-Helical peptide vesicles with chiral membranes as enantioselective nanoreactors. Chem. Commun. 53, 10958–10961 (2017).

    CAS  Google Scholar 

  130. 130.

    Liu, S., Gan, H., Hermann, A. T., Rick, S. W. & Gibb, B. C. Kinetic resolution of constitutional isomers controlled by selective protection inside a supramolecular nanocapsule. Nat. Chem. 2, 847–852 (2010).

    CAS  Google Scholar 

  131. 131.

    Yebeutchou, R. M. & Dalcanale, E. Highly selective monomethylation of primary amines through host−guest product sequestration. J. Am. Chem. Soc. 131, 2452–2453 (2009).

    CAS  Google Scholar 

  132. 132.

    Masseroni, D., Mosca, S., Mower, M. P., Blackmond, D. G. & Rebek, J. Jr. Cavitands as reaction vessels and blocking groups for selective reactions in water. Angew. Chem. Int. Ed. 55, 8290–8293 (2016).

    CAS  Google Scholar 

  133. 133.

    Fung, Y.-S., Yan, S.-C. & Wong, M.-K. Selective oxidation of unactivated C–H bonds by supramolecular control. Org. Biomol. Chem. 10, 3122–3130 (2012).

    CAS  Google Scholar 

  134. 134.

    Chen, B., Holstein, J. J., Horiuchi, S., Hiller, W. G. & Clever, G. H. Pd(II) coordination sphere engineering: Pyridine cages, quinoline bowls, and heteroleptic pills binding one or two fullerenes. J. Am. Chem. Soc. 141, 8907–8913 (2019).

    CAS  Google Scholar 

  135. 135.

    Tahara, K. et al. Self-assembled monolayers as templates for linearly nanopatterned covalent chemical functionalization of graphite and graphene surfaces. ACS Nano 12, 11520–11528 (2018).

    CAS  Google Scholar 

  136. 136.

    Udayabhaskararao, T. et al. Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle superlattices. Science 358, 514–518 (2017).

    CAS  Google Scholar 

  137. 137.

    Takezawa, H., Kanda, T., Nanjo, H. & Fujita, M. Site-selective functionalization of linear diterpenoids through U-shaped folding in a confined artificial cavity. J. Am. Chem. Soc. 141, 5112–5115 (2019).

    CAS  Google Scholar 

  138. 138.

    Zhang, J. et al. A Pd@zeolite catalyst for nitroarene hydrogenation with high product selectivity by sterically controlled adsorption in the zeolite micropores. Angew. Chem. Int. Ed. 56, 9747–9751 (2017).

    CAS  Google Scholar 

  139. 139.

    Ridelman, Y. et al. Metallic nanobowls by galvanic replacement reaction on heterodimeric nanoparticles. Small 8, 654–660 (2012).

    CAS  Google Scholar 

  140. 140.

    Huang, W. & Ferris, J. P. One-step, regioselective synthesis of up to 50-mers of RNA oligomers by montmorillonite catalysis. J. Am. Chem. Soc. 128, 8914–8919 (2006).

    CAS  Google Scholar 

  141. 141.

    Swadling, J. B., Coveney, P. V. & Greenwell, H. C. Clay minerals mediate folding and regioselective interactions of RNA: A large-scale atomistic simulation study. J. Am. Chem. Soc. 132, 13750–13764 (2010).

    CAS  Google Scholar 

  142. 142.

    Turro, N. J. et al. Demonstration of a chemical transformation inside a fullerene. The reversible conversion of the allotropes of H2@C60. J. Am. Chem. Soc. 130, 10506–10507 (2008).

    CAS  Google Scholar 

  143. 143.

    Micheroni, D., Lin, Z., Chen, Y.-S. & Lin, W. Luminescence enhancement of cis-[Ru(bpy)2(py)2]2+ via confinement within a metal–organic framework. Inorg. Chem. 58, 7645–7648 (2019).

    CAS  Google Scholar 

  144. 144.

    Chatelet, B. et al. Superbases in confined space: Control of the basicity and reactivity of the proton transfer. J. Am. Chem. Soc. 135, 18659–18664 (2013).

    CAS  Google Scholar 

  145. 145.

    Körner, S. K., Tucci, F. C., Rudkevich, D. M., Heinz, T. & Rebek, J. A self-assembled cylindrical capsule: New supramolecular phenomena through encapsulation. Chem. Eur. J. 6, 187–195 (2000).

    Google Scholar 

  146. 146.

    Chen, L.-J. et al. Construction of porphyrin-containing metallacycle with improved stability and activity within mesoporous carbon. J. Am. Chem. Soc. 140, 5049–5052 (2018).

    CAS  Google Scholar 

  147. 147.

    Kang, Y.-H. et al. Fabrication of isolated metal–organic polyhedra in confined cavities: Adsorbents/catalysts with unusual dispersity and activity. J. Am. Chem. Soc. 138, 6099–6102 (2016).

    CAS  Google Scholar 

  148. 148.

    Tang, T. & Hou, Y. Chemical confinement and utility of lithium polysulfides in lithium sulfur batteries. Small Methods https://doi.org/10.1002/smtd.201900001 (2019).

  149. 149.

    Ren, W., Ma, W., Zhang, S. & Tang, B. Recent advances in shuttle effect inhibition for lithium sulfur batteries. Energy Storage Mater. 23, 707–732 (2019).

    Google Scholar 

  150. 150.

    Liu, W., Lin, D., Pei, A. & Cui, Y. Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement. J. Am. Chem. Soc. 138, 15443–15450 (2016).

    CAS  Google Scholar 

  151. 151.

    Hertzberg, B., Alexeev, A. & Yushin, G. Deformations in Si−Li anodes upon electrochemical alloying in nano-confined space. J. Am. Chem. Soc. 132, 8548–8549 (2010).

    CAS  Google Scholar 

  152. 152.

    Zhang, J., Hu, H., Li, Z. & Lou, X. W. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium–sulfur batteries. Angew. Chem. Int. Ed. 55, 3982–3986 (2016).

    CAS  Google Scholar 

  153. 153.

    Xin, S. et al. Smaller sulfur molecules promise better lithium–sulfur batteries. J. Am. Chem. Soc. 134, 18510–18513 (2012).

    CAS  Google Scholar 

  154. 154.

    Sachtler, W. M. H. Metal clusters in zeolites: An intriguing class of catalysts. Acc. Chem. Res. 26, 383–387 (1993).

    CAS  Google Scholar 

  155. 155.

    Liu, L. et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 16, 132–138 (2017).

    CAS  Google Scholar 

  156. 156.

    Sun, Q. et al. Subnanometric hybrid Pd-M(OH)2, M = Ni, Co, clusters in zeolites as highly efficient nanocatalysts for hydrogen generation. Chem 3, 477–493 (2017).

    CAS  Google Scholar 

  157. 157.

    Mon, M. et al. Stabilized Ru[(H2O)6]3+ in confined spaces (MOFs and zeolites) catalyzes the imination of primary alcohols under atmospheric conditions with wide scope. ACS Catal. 8, 10401–10406 (2018).

    CAS  Google Scholar 

  158. 158.

    Sawada, T., Yoshizawa, M., Sato, S. & Fujita, M. Minimal nucleotide duplex formation in water through enclathration in self-assembled hosts. Nat. Chem. 1, 53–56 (2009). An unstable assembly composed of a single DNA base pair is stabilized under confinement within a coordination cage.

    CAS  Google Scholar 

  159. 159.

    Cao, H. & De Feyter, S. Amplification of chirality in surface-confined supramolecular bilayers. Nat. Commun. 9, 3416 (2018).

    Google Scholar 

  160. 160.

    Hazen, R. M. & Sholl, D. S. Chiral selection on inorganic crystalline surfaces. Nat. Mater. 2, 367–374 (2003).

    CAS  Google Scholar 

  161. 161.

    Li, H. et al. Mechanical bond-induced radical stabilization. J. Am. Chem. Soc. 135, 456–467 (2013).

    CAS  Google Scholar 

  162. 162.

    Howlader, P., Mondal, B., Purba, P. C., Zangrando, E. & Mukherjee, P. S. Self-assembled Pd(II) barrels as containers for transient merocyanine form and reverse thermochromism of spiropyran. J. Am. Chem. Soc. 140, 7952–7960 (2018).

    CAS  Google Scholar 

  163. 163.

    Takezawa, H., Akiba, S., Murase, T. & Fujita, M. Cavity-directed chromism of phthalein dyes. J. Am. Chem. Soc. 137, 7043–7046 (2015).

    CAS  Google Scholar 

  164. 164.

    Samanta, D. et al. Reversible chromism of spiropyran in the cavity of a flexible coordination cage. Nat. Commun. 9, 641 (2018).

    Google Scholar 

  165. 165.

    Rupar, P. A., Staroverov, V. N. & Baines, K. M. A cryptand-encapsulated germanium(II) dication. Science 322, 1360–1363 (2008).

    CAS  Google Scholar 

  166. 166.

    Iwasawa, T., Hooley, R. J. & Rebek, J. Stabilization of labile carbonyl addition intermediates by a synthetic receptor. Science 317, 493–496 (2007).

    CAS  Google Scholar 

  167. 167.

    Rizzuto, F. J., Ramsay, W. J. & Nitschke, J. R. Otherwise unstable structures self-assemble in the cavities of cuboctahedral coordination cages. J. Am. Chem. Soc. 140, 11502–11509 (2018). A highly unstable penta-coordinated Cd II complex is stabilized under confinement via a combination of intermolecular interactions and steric constraint within the cavity of a coordination cage.

    CAS  Google Scholar 

  168. 168.

    Cram, D. J., Tanner, M. E. & Thomas, R. The taming of cyclobutadiene. Angew. Chem. Int. Ed. 30, 1024–1027 (1991).

    Google Scholar 

  169. 169.

    Liu, A., Traulsen, C. H.-H. & Cornelissen, J. J. L. M. Nitroarene reduction by a virus protein cage based nanoreactor. ACS Catal. 6, 3084–3091 (2016).

    CAS  Google Scholar 

  170. 170.

    Yamashina, M., Sei, Y., Akita, M. & Yoshizawa, M. Safe storage of radical initiators within a polyaromatic nanocapsule. Nat. Commun. 5, 4662 (2014).

    CAS  Google Scholar 

  171. 171.

    Mal, P., Breiner, B., Rissanen, K. & Nitschke, J. R. White phosphorus is air-stable within a self-assembled tetrahedral capsule. Science 324, 1697–1699 (2009).

    CAS  Google Scholar 

  172. 172.

    Kaphan, D. M., Levin, M. D., Bergman, R. G., Raymond, K. N. & Toste, F. D. A supramolecular microenvironment strategy for transition metal catalysis. Science 350, 1235–1238 (2015).

    CAS  Google Scholar 

  173. 173.

    Pluth, M. D., Bergman, R. G. & Raymond, K. N. Supramolecular catalysis of orthoformate hydrolysis in basic solution: An enzyme-like mechanism. J. Am. Chem. Soc. 130, 11423–11429 (2008).

    CAS  Google Scholar 

  174. 174.

    Fan, Q. et al. Precise monoselective aromatic C–H bond activation by chemisorption of meta-aryne on a metal surface. J. Am. Chem. Soc. 140, 7526–7532 (2018).

    CAS  Google Scholar 

  175. 175.

    Warmuth, R., Kerdelhué, J.-L., Sánchez Carrera, S., Langenwalter, K. J. & Brown, N. Rate acceleration through dispersion interactions: Effect of a hemicarcerand on the transition state of inner phase decompositions of diazirines. Angew. Chem. Int. Ed. 41, 96–99 (2002).

    CAS  Google Scholar 

  176. 176.

    Juríček, M. et al. Induced-fit catalysis of corannulene bowl-to-bowl inversion. Nat. Chem. 6, 222–228 (2014). An important example that quantifies the stabilization of the transition state associated with corannulene bowl-to-bowl inversion under confinement.

    Google Scholar 

  177. 177.

    Lee, T.-C. et al. Chemistry inside molecular containers in the gas phase. Nat. Chem. 5, 376–382 (2013).

    CAS  Google Scholar 

  178. 178.

    Warmuth, R. o-Benzyne: Strained alkyne or cumulene?—NMR characterization in a molecular container. Angew. Chem. Int. Ed. 36, 1347–1350 (1997).

    CAS  Google Scholar 

  179. 179.

    Yoshizawa, M., Kusukawa, T., Fujita, M. & Yamaguchi, K. Ship-in-a-bottle synthesis of otherwise labile cyclic trimers of siloxanes in a self-assembled coordination cage. J. Am. Chem. Soc. 122, 6311–6312 (2000).

    CAS  Google Scholar 

  180. 180.

    Nuñez-Lopez, A. et al. Direct visualization of pyrrole reactivity by confined oxidation in a cyclodextrin metal–organic framework. Angew. Chem. Int. Ed. 58, 9179–9183 (2019).

    Google Scholar 

  181. 181.

    Yumura, T., Takeuchi, M., Kobayashi, H. & Kuroda, Y. Effects of ZSM-5 zeolite confinement on reaction intermediates during dioxygen activation by enclosed dicopper cations. Inorg. Chem. 48, 508–517 (2009).

    CAS  Google Scholar 

  182. 182.

    Woertink, J. S. et al. A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol. Proc. Natl Acad. Sci. USA 106, 18908–18913 (2009).

    CAS  Google Scholar 

  183. 183.

    Sushkevich, V. L., Palagin, D., Ranocchiari, M. & van Bokhoven, J. A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 356, 523–527 (2017).

    CAS  Google Scholar 

  184. 184.

    Bälter, M. et al. Emission color tuning and white-light generation based on photochromic control of energy transfer reactions in polymer micelles. Chem. Sci. 7, 5867–5871 (2016).

    Google Scholar 

  185. 185.

    Zhang, H. et al. Zeolite-confined carbon dots: Tuning thermally activated delayed fluorescence emission via energy transfer. Mater. Chem. Front. https://doi.org/10.1039/C9QM00549H (2020).

  186. 186.

    Naren, G. et al. An all-photonic full color RGB system based on molecular photoswitches. Nat. Commun. 10, 3996 (2019). Confinement of blue fluorescent donor molecules with red and green photochromic acceptor molecules within micelles allows energy transfer between the confined species, resulting in controlled emission throughout the entire RGB colour system.

    CAS  Google Scholar 

  187. 187.

    Liu, J. et al. Carbon dots in zeolites: A new class of thermally activated delayed fluorescence materials with ultralong lifetimes. Sci. Adv. 3, e1603171 (2017).

    Google Scholar 

  188. 188.

    Zhang, Q.-W. et al. Multicolor photoluminescence including white-light emission by a single host–guest complex. J. Am. Chem. Soc. 138, 13541–13550 (2016).

    CAS  Google Scholar 

  189. 189.

    Ams, M. R., Ajami, D., Craig, S. L., Yang, J.-S. & Rebek, J. “Too small, too big, and just right” − Optical sensing of molecular conformations in self-assembled capsules. J. Am. Chem. Soc. 131, 13190–13191 (2009).

    CAS  Google Scholar 

  190. 190.

    Hua, B. et al. Supramolecular solid-state microlaser constructed from pillar[5]arene-based host–guest complex microcrystals. J. Am. Chem. Soc. 140, 15651–15654 (2018).

    CAS  Google Scholar 

  191. 191.

    Mako, T. L., Racicot, J. M. & Levine, M. Supramolecular luminescent sensors. Chem. Rev. 119, 322–477 (2019).

    CAS  Google Scholar 

  192. 192.

    Jiang, Y. et al. Maximizing photoresponsive efficiency by isolating metal–organic polyhedra into confined nanoscaled spaces. J. Am. Chem. Soc. 141, 8221–8227 (2019).

    CAS  Google Scholar 

  193. 193.

    Biedermann, F., Elmalem, E., Ghosh, I., Nau, W. M. & Scherman, O. A. Strongly fluorescent, switchable perylene bis(diimide) host–guest complexes with cucurbit[8]uril in water. Angew. Chem. Int. Ed. 51, 7739–7743 (2012).

    CAS  Google Scholar 

  194. 194.

    Song, N., Kakuta, T., Yamagishi, T., Yang, Y.-W. & Ogoshi, T. Molecular-scale porous materials based on pillar[n]arenes. Chem 4, 2029–2053 (2018).

    CAS  Google Scholar 

  195. 195.

    Xue, M., Yang, Y., Chi, X., Zhang, Z. & Huang, F. Pillararenes, a new class of macrocycles for supramolecular chemistry. Acc. Chem. Res. 45, 1294–1308 (2012).

    CAS  Google Scholar 

  196. 196.

    Ogoshi, T., Yamagishi, T. & Nakamoto, Y. Pillar-shaped macrocyclic hosts pillar[n]arenes: New key players for supramolecular chemistry. Chem. Rev. 116, 7937–8002 (2016).

    CAS  Google Scholar 

  197. 197.

    Tian, Y., Yan, X., Saha, M. L., Niu, Z. & Stang, P. J. Hierarchical self-assembly of responsive organoplatinum(II) metallacycle–TMV complexes with turn-on fluorescence. J. Am. Chem. Soc. 138, 12033–12036 (2016).

    CAS  Google Scholar 

  198. 198.

    Jiang, T., Wang, X., Wang, J., Hu, G. & Ma, X. Humidity- and temperature-tunable multicolor luminescence of cucurbit[8]uril-based supramolecular assembly. ACS Appl. Mater. Interfaces 11, 14399–14407 (2019).

    CAS  Google Scholar 

  199. 199.

    Kundu, P. K., Olsen, G. L., Kiss, V. & Klajn, R. Nanoporous frameworks exhibiting multiple stimuli responsiveness. Nat. Commun. 5, 3588 (2014).

    Google Scholar 

  200. 200.

    Rizzuto, F. J., von Krbek, L. K. S. & Nitschke, J. R. Strategies for binding multiple guests in metal–organic cages. Nat. Rev. Chem. 3, 204–222 (2019).

    Google Scholar 

  201. 201.

    Biedermann, F., Hathazi, D. & Nau, W. M. Associative chemosensing by fluorescent macrocycle–dye complexes – A versatile enzyme assay platform beyond indicator displacement. Chem. Commun. 51, 4977–4980 (2015).

    CAS  Google Scholar 

  202. 202.

    Sinn, S. & Biedermann, F. Chemical sensors based on cucurbit[n]uril macrocycles. Isr. J. Chem. 58, 357–412 (2018).

    CAS  Google Scholar 

  203. 203.

    Wu, G., Olesińska, M., Wu, Y., Matak-Vinkovic, D. & Scherman, O. A. Mining 2:2 complexes from 1:1 stoichiometry: Formation of cucurbit[8]uril–diarylviologen quaternary complexes favored by electron-donating substituents. J. Am. Chem. Soc. 139, 3202–3208 (2017).

    CAS  Google Scholar 

  204. 204.

    Yamashina, M. et al. Preparation of highly fluorescent host–guest complexes with tunable color upon encapsulation. J. Am. Chem. Soc. 137, 9266–9269 (2015). Excellent example illustrating how co-encapsulation of fluorescent dyes with other species can be employed to tune the emission colour of the dye.

    CAS  Google Scholar 

  205. 205.

    Jana, A. et al. Functionalised tetrathiafulvalene- (TTF-) macrocycles: Recent trends in applied supramolecular chemistry. Chem. Soc. Rev. 47, 5614–5645 (2018).

    CAS  Google Scholar 

  206. 206.

    Klosterman, J. K., Yamauchi, Y. & Fujita, M. Engineering discrete stacks of aromatic molecules. Chem. Soc. Rev. 38, 1714–1725 (2009).

    CAS  Google Scholar 

  207. 207.

    Rizzuto, F. J., Wood, D. M., Ronson, T. K. & Nitschke, J. R. Tuning the redox properties of fullerene clusters within a metal–organic capsule. J. Am. Chem. Soc. 139, 11008–11011 (2017).

    CAS  Google Scholar 

  208. 208.

    Matsumoto, K. et al. A peanut-shaped polyaromatic capsule: Solvent-dependent transformation and electronic properties of a non-contacted fullerene dimer. Angew. Chem. Int. Ed. 58, 8463–8467 (2019).

    CAS  Google Scholar 

  209. 209.

    Nurttila, S. S., Becker, R., Hessels, J., Woutersen, S. & Reek, J. N. H. Photocatalytic hydrogen evolution by a synthetic [FeFe] hydrogenase mimic encapsulated in a porphyrin cage. Chem. Eur. J. 24, 16395–16406 (2018).

    CAS  Google Scholar 

  210. 210.

    Kung, C.-W. et al. Increased electrical conductivity in a mesoporous metal–organic framework featuring metallacarboranes guests. J. Am. Chem. Soc. 140, 3871–3875 (2018).

    CAS  Google Scholar 

  211. 211.

    Barnes, J. C. et al. Semiconducting single crystals comprising segregated arrays of complexes of C60. J. Am. Chem. Soc. 137, 2392–2399 (2015).

    CAS  Google Scholar 

  212. 212.

    Aubrey, M. L. et al. Chemiresistive detection of gaseous hydrocarbons and interrogation of charge transport in Cu[Ni(2,3-pyrazinedithiolate)2] by gas adsorption. J. Am. Chem. Soc. 141, 5005–5013 (2019).

    CAS  Google Scholar 

  213. 213.

    Fahrenbach, A. C. et al. A semiconducting organic radical cationic host–guest complex. ACS Nano 6, 9964–9971 (2012).

    CAS  Google Scholar 

  214. 214.

    Talin, A. A. et al. Tunable electrical conductivity in metal-organic framework thin-film devices. Science 343, 66–69 (2014). Unique example in which charge transfer between a confined species and the metal–organic framework of its environment results in conductivity throughout the material.

    CAS  Google Scholar 

  215. 215.

    Huang, Q.-Q. et al. Tunable electrical conductivity of a new 3D MOFs: Cu-TATAB. Inorg. Chem. Commun. 105, 119–124 (2019).

    CAS  Google Scholar 

  216. 216.

    Schneider, C. et al. High electrical conductivity and high porosity in a guest@MOF material: Evidence of TCNQ ordering within Cu3BTC2 micropores.Chem. Sci. 9, 7405–7412 (2018).

    CAS  Google Scholar 

  217. 217.

    Küchler, A., Yoshimoto, M., Luginbühl, S., Mavelli, F. & Walde, P. Enzymatic reactions in confined environments. Nat. Nanotechnol. 11, 409–420 (2016).

    Google Scholar 

  218. 218.

    Warshel, A. et al. Electrostatic basis for enzyme catalysis. Chem. Rev. 106, 3210–3235 (2006).

    CAS  Google Scholar 

  219. 219.

    Gao, J. et al. Mechanisms and free energies of enzymatic reactions. Chem. Rev. 106, 3188–3209 (2006).

    CAS  Google Scholar 

  220. 220.

    Fracaroli, A. M. et al. Seven post-synthetic covalent reactions in tandem leading to enzyme-like complexity within metal–organic framework crystals. J. Am. Chem. Soc. 138, 8352–8355 (2016).

    CAS  Google Scholar 

  221. 221.

    Wei, H. & Wang, E. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 42, 6060–6093 (2013).

    CAS  Google Scholar 

  222. 222.

    Meyer, H.-P. et al. The use of enzymes in organic synthesis and the life sciences: Perspectives from the Swiss Industrial Biocatalysis Consortium (SIBC). Catal. Sci. Technol. 3, 29–40 (2013).

    CAS  Google Scholar 

  223. 223.

    Future Perspectives in Catalysis (Dutch National Research School Combination, 2009).

Download references

Acknowledgements

This work was supported by the European Research Council (grant no. 336080). A.B.G. acknowledges funding from the Mortimer B. Zuckerman STEM Leadership Program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rafal Klajn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grommet, A.B., Feller, M. & Klajn, R. Chemical reactivity under nanoconfinement. Nat. Nanotechnol. 15, 256–271 (2020). https://doi.org/10.1038/s41565-020-0652-2

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research