Abstract
Memristive and nanoionic devices have recently emerged as leading candidates for neuromorphic computing architectures. While top-down fabrication based on conventional bulk materials has enabled many early neuromorphic devices and circuits, bottom-up approaches based on low-dimensional nanomaterials have shown novel device functionality that often better mimics a biological neuron. In addition, the chemical, structural and compositional tunability of low-dimensional nanomaterials coupled with the permutational flexibility enabled by van der Waals heterostructures offers significant opportunities for artificial neural networks. In this Review, we present a critical survey of emerging neuromorphic devices and architectures enabled by quantum dots, metal nanoparticles, polymers, nanotubes, nanowires, two-dimensional layered materials and van der Waals heterojunctions with a particular emphasis on bio-inspired device responses that are uniquely enabled by low-dimensional topology, quantum confinement and interfaces. We also provide a forward-looking perspective on the opportunities and challenges of neuromorphic nanoelectronic materials in comparison with more mature technologies based on traditional bulk electronic materials.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (The MIT Press, 2016).
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
James, C. D. et al. A historical survey of algorithms and hardware architectures for neural-inspired and neuromorphic computing applications. Biol. Insp. Cog. Arch. 19, 49–64 (2017).
Schuman, C. D. et al. A survey of neuromorphic computing and neural networks in hardware. Preprint at https://arxiv.org/abs/1705.06963 (2018).
Bear, M. F., Connors, B. W. & Paradiso, M. A. Neuroscience: Exploring the Brain (Wolters Kluwer, 2015).
Indiveri, G., Chicca, E. & Douglas, R. J. Artificial cognitive systems: From VLSI networks of spiking neurons to neuromorphic cognition. Cogn. Comp. 1, 119–127 (2009).
Indiveri, G. et al. Neuromorphic silicon neuron circuits. Front. Neuro. 5, 73 (2011).
Krestinskaya, O., James, A. P. & Leon, C. O. Neuro-memristive circuits for edge computing: A review. IEEE Trans. Neural Netw. Learn. Syst. 31, 4–23 (2020).
Jeong, D. S. et al. Memristors for energy-efficient new computing paradigms. Adv. Elec. Mater. 2, 1600090 (2016).
Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013).
Merolla, P. A. et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668–673 (2014).
Furber, S. B., Galluppi, F., Temple, S. & Plana, L. A. The SpiNNaker project. Proc. IEEE 102, 652–665 (2014).
Tuma, T. et al. Stochastic phase-change neurons. Nat. Nanotechnol. 11, 693–699 (2016).
Duygu, K., Shimeng, Y. & Wong, H. S. P. Synaptic electronics: materials, devices and applications. Nanotechnology 24, 382001 (2013).
Wong, H. S. P. et al. Metal-oxide RRAM. Proc. IEEE 100, 1951–1970 (2012).
Yu, S. & Chen, P. Y. Emerging memory technologies: Recent trends and prospects. IEEE Sol. Stat. Circuit Mag. 8, 43–56 (2016).
Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).
Sengupta, A. & Roy, K. Neuromorphic computing enabled by physics of electron spins: Prospects and perspectives. Appl. Phys. Exp. 11, 030101 (2018).
Prezioso, M. et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015).
Burr, G. W. et al. Neuromorphic computing using non-volatile memory. Adv. Phys. X 2, 89–124 (2017).
Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive systems. Nat. Elect. 1, 22–29 (2018).
Wang, Z. et al. Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 1, 137–145 (2018).
Zidan, M. A. et al. A general memristor-based partial differential equation solver. Nat. Electron. 1, 411–420 (2018).
Sun, Z. et al. Solving matrix equations in one step with cross-point resistive arrays. Proc. Natl Acad. Sci. USA 116, 4123–4128 (2019).
Bayat, F. M. et al. Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits. Nat. Commun. 9, 2331 (2018).
Prezioso, M. et al. Spike-timing-dependent plasticity learning of coincidence detection with passively integrated memristive circuits. Nat. Commun. 9, 5311 (2018).
Shulaker, M. M. et al. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 547, 74–78 (2017).
Jariwala, D. et al. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem. Soc. Rev. 42, 2824–2860 (2013).
Jariwala, D. et al. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8, 1102–1120 (2014).
Sangwan, V. K. & Hersam, M. C. Electronic transport in two-dimensional materials. Annu. Rev. Phys. Chem. 69, 299–325 (2018).
Jariwala, D., Marks, T. J. & Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 16, 170–181 (2016).
Upadhyay, N. K. et al. Emerging memory devices for neuromorphic computing. Adv. Mater. Tech. 4, 1800589 (2019).
Sangwan, V. K. et al. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554, 500–504 (2018).
Sun, L. et al. Synaptic computation enabled by Joule heating of single-layered semiconductors for sound localization. Nano Lett. 18, 3229–3234 (2018).
Zhu, X., Li, D., Liang, X. & Lu, W. D. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 18, 141–148 (2018).
van de Burgt, Y. et al. Organic electronics for neuromorphic computing. Nat. Electron 1, 386–397 (2018).
Rivnay, J. et al. Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018).
Sanchez Esqueda, I. et al. Aligned carbon nanotube synaptic transistors for large-scale neuromorphic computing. ACS Nano 12, 7352–7361 (2018).
Kim, S. et al. Pattern recognition using carbon nanotube synaptic transistors with an adjustable weight update protocol. ACS Nano 11, 2814–2822 (2017).
Zhu, J. et al. Ion gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamics. Adv. Mater. 30, 1800195 (2018).
Wang, S. et al. A MoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility. Adv. Mater. 31, 1806227 (2018).
Kim, Y. et al. A bioinspired flexible organic artificial afferent nerve. Science 360, 998–1003 (2018).
Ziegler, M., Wenger, C., Chicca, E. & Kohlstedt, H. Tutorial: Concepts for closely mimicking biological learning with memristive devices: Principles to emulate cellular forms of learning. J. Appl. Phys. 124, 152003 (2018).
McCulloch, W. S. & Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115 (1943).
Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psych. Rev. 65, 386–408 (1958).
Hertz, J., Krogh, A. & Palmer, R. G. Introduction to the Theory of Neural Computation (Westview Press, 1991).
Wasserman, P. D. Neural Computing: Theory and Practice (Van Nostrand Reinhold, 1965).
Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physio. 117, 500–544 (1952).
Leon, C. Memristor, Hodgkin–Huxley, and edge of chaos. Nanotechnology 24, 383001 (2013).
Pershin, Y. V. & Di Ventra, M. Memory effects in complex materials and nanoscale systems. Adv. Phys. 60, 145–227 (2011).
Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).
Minsky, M. A Neural-Analogue Calculator Based Upon a Probability Model of Reinforcement (Harvard University Psychological Laboratories, 1952).
Diorio, C., Hasler, P., Minch, A. & Mead, C. A. A single-transistor silicon synapse. IEEE Trans. Electron. Dev. 43, 1972–1980 (1996).
Buonomano, D. V. & Maass, W. State-dependent computations: spatiotemporal processing in cortical networks. Nat. Rev. Neurosci. 10, 113 (2009).
Qian, C. et al. Multi-gate organic neuron transistors for spatiotemporal information processing. Appl. Phys. Lett. 110, 083302 (2017).
Lanza, M. et al. Recommended methods to study resistive switching devices. Adv. Elec. Mater. 5, 1800143 (2019).
Pi, S. et al. Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension. Nat. Nanotechnol. 14, 35–39 (2018).
Seok, J. Y. et al. A review of three-dimensional resistive switching cross-bar array memories from the integration and materials property points of view. Adv. Funct. Mater. 24, 5316–5339 (2014).
Waser, R., Dittmann, R., Staikov, G. & Szot, K. Redox-based resistive switching memories – Nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009).
Tan, C., Liu, Z., Huang, W. & Zhang, H. Non-volatile resistive memory devices based on solution-processed ultrathin two-dimensional nanomaterials. Chem. Soc. Rev. 44, 2615–2628 (2015).
Yang, J. J. et al. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429–433 (2008).
Pickett, M. D., Medeiros-Ribeiro, G. & Williams, R. S. A scalable neuristor built with Mott memristors. Nat. Mater. 12, 114–117 (2013).
Chang, S. et al. Occurrence of both unipolar memory and threshold resistance switching in a NiO film. Phys. Rev. Lett. 102, 026801 (2009).
Linn, E., Rosezin, R., Kugeler, C. & Waser, R. Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9, 403–406 (2010).
Kumar, S., Strachan, J. P. & Williams, R. S. Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature 548, 318–321 (2017).
Wang, Z. et al. Capacitive neural network with neuro-transistors. Nat. Commun. 9, 3208 (2018).
Wang, Z. et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2017).
Chua, L. O. & Sung, Mo,K. Memristive devices and systems. Proc. IEEE 64, 209–223 (1976).
Abdelouahab, M.-S., Lozi, R. & Chua, L. Memfractance: A mathematical paradigm for circuit elements with memory. Intern. J. Bifur. Chaos Appl. Sci. Engrg. 24, 1430023 (2014).
Kim, S. et al. Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity. Nano Lett. 15, 2203–2211 (2015).
Xia, Q. et al. Two- and three-terminal resistive switches: Nanometer-scale memristors and memistors. Adv. Funct. Mater. 21, 2660–2665 (2011).
Yang, Y., Chen, B. & Lu, W. D. Memristive physically evolving networks enabling the emulation of heterosynaptic plasticity. Adv. Mater. 27, 7720–7727 (2015).
Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysio. 80, 1–27 (1998).
Sangwan, V. K. et al. Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nat. Nanotechnol. 10, 403–406 (2015).
Yang, Y. et al. Three-terminal memtransistors based on two-dimensional layered gallium selenide nanosheets for potential low-power electronics applications. Nano Energy 57, 566–573 (2019).
Wang, L. et al. Artificial synapses based on multiterminal memtransistors for neuromorphic application. Adv. Funct. Mater. 29, 1901106 (2019).
Mouttet, B. Memristive systems analysis of 3-terminal devices. In Proc. 2010 17th IEEE International Conference on Electronics, Circuits and Systems 930–933 (IEEE, 2010).
Caporale, N. & Dan, Y. Spike timing–dependent plasticity: A Hebbian learning rule. Ann. Rev. Neuro. 31, 25–46 (2008).
Bi, G.-q & Poo, M.-m Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neuro. 18, 10464–10472 (1998).
Sun, C. et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534–538 (2015).
Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018).
Mesaritakis, C., Kapsalis, A., Bogris, A. & Syvridis, D. Artificial neuron based on integrated semiconductor quantum dot mode-locked lasers. Sci. Rep. 6, 39317 (2016).
Maier, P. et al. Electro-photo-sensitive memristor for neuromorphic and arithmetic computing. Phys. Rev. Appl. 5, 054011 (2016).
Maier, P. et al. Memristive operation mode of a site-controlled quantum dot floating gate transistor. Appl. Phys. Lett. 106, 203501 (2015).
Wang, Y. et al. Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 30, 1802883 (2018).
Han, S.-T. et al. Black phosphorus quantum dots with tunable memory properties and multilevel resistive switching characteristics. Adv. Sci. 4, 1600435 (2017).
Alibart, F. et al. An organic nanoparticle transistor behaving as a biological spiking synapse. Adv. Funct. Mater. 20, 330–337 (2010).
Goswami, S. et al. Robust resistive memory devices using solution-processable metal-coordinated azo aromatics. Nat. Mater. 16, 1216–1224 (2017).
Chua, L. O. Nonlinear circuit foundations for nanodevices. I. The four-element torus. Proc. IEEE 91, 1830–1859 (2003).
Roychowdhury, V. P., Janes, D. B., Bandyopadhyay, S. & Xiaodong, W. Collective computational activity in self-assembled arrays of quantum dots: a novel neuromorphic architecture for nanoelectronics. IEEE Trans. Electron. Dev. 43, 1688–1699 (1996).
Altaisky, M. V. et al. Towards a feasible implementation of quantum neural networks using quantum dots. Appl. Phys. Lett. 108, 103108 (2016).
Cao, Q. et al. Carbon nanotube transistors scaled to a 40-nanometer footprint. Science 356, 1369–1372 (2017).
Joshi, J., Parker, A. C. & Hsu, C. A carbon nanotube cortical neuron with spike-timing-dependent plasticity. In Proc. 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 1651–1654 (IEEE, 2009).
Kim, S., Yoon, J., Kim, H.-D. & Choi, S.-J. Carbon nanotube synaptic transistor network for pattern recognition. ACS Appl. Mater. Inter. 7, 25479–25486 (2015).
Shen, A. M. et al. Analog neuromorphic module based on carbon nanotube synapses. ACS Nano 7, 6117–6122 (2013).
Kim, K. et al. A carbon nanotube synapse with dynamic logic and learning. Adv. Mater. 25, 1693–1698 (2013).
Feng, P. et al. Printed neuromorphic devices based on printed carbon nanotube thin-film transistors. Adv. Funct. Mater. 27, 1604447 (2017).
Danesh, C. D. et al. Synaptic resistors for concurrent inference and learning with high energy efficiency. Adv. Mater. 31, 1808032 (2019).
Duan, X., Huang, Y. & Lieber, C. M. Nonvolatile memory and programmable logic from molecule-gated nanowires. Nano Lett. 2, 487–490 (2002).
Younis, A. et al. High-performance nanocomposite based memristor with controlled quantum dots as charge traps. ACS Appl. Mater. Inter. 5, 2249–2254 (2013).
Milano, G. et al. Self-limited single nanowire systems combining all-in-one memristive and neuromorphic functionalities. Nat. Commun. 9, 5151 (2018).
Hong, D. S., Chen, Y. S., Sun, J. R. & Shen, B. G. Ternary synaptic plasticity arising from memdiode behavior of TiOx single nanowires. Adv. Elec. Mater. 2, 1500359 (2016).
O’Kelly, C. J. et al. Associative enhancement of time correlated response to heterogeneous stimuli in a neuromorphic nanowire device. Adv. Elec. Mater. 2, 1500458 (2016).
Xu, W., Min, S.-Y., Hwang, H. & Lee, T.-W. Organic core-sheath nanowire artificial synapses with femtojoule energy consumption. Sci. Adv. 2, e1501326 (2016).
Shainline, J. M., Buckley, S. M., Mirin, R. P. & Nam, S. W. Superconducting optoelectronic circuits for neuromorphic computing. Phys. Rev. Appl. 7, 034013 (2017).
Cho, B. et al. Organic resistive memory devices: Performance enhancement, integration, and advanced architectures. Adv. Funct. Mater. 21, 2806–2829 (2011).
Zhitenev, N. B., Sidorenko, A., Tennant, D. M. & Cirelli, R. A. Chemical modification of the electronic conducting states in polymer nanodevices. Nat. Nanotechnol. 2, 237–242 (2007).
Ji, Y. et al. Flexible and twistable non-volatile memory cell array with all-organic one diode–one resistor architecture. Nat. Commun. 4, 2707 (2013).
Lai, Q. et al. Ionic/electronic hybrid materials integrated in a synaptic transistor with signal processing and learning functions. Adv. Mater. 22, 2448–2453 (2010).
Fuller, E. J. et al. Li-ion synaptic transistor for low power analog computing. Adv. Mater. 29, 1604310 (2017).
van de Burgt, Y. et al. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414–418 (2017).
Fuller, E. J. et al. Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science 364, 570–574 (2019).
Gkoupidenis, P. et al. Orientation selectivity in a multi-gated organic electrochemical transistor. Sci. Rep. 6, 27007 (2016).
Gkoupidenis, P., Koutsouras, D. A. & Malliaras, G. G. Neuromorphic device architectures with global connectivity through electrolyte gating. Nat. Commun. 8, 15448 (2017).
Castro Neto, A. H. et al. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).
Grigorieva, I. V. & Geim, A. K. Van der Waals heterostructures. Nature 499, 419–425 (2013).
Kim, M. et al. Zero-static power radio-frequency switches based on MoS2 atomristors. Nat. Commun. 9, 2524 (2018).
Ge, R. et al. Atomristor: Nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides. Nano Lett. 18, 434–441 (2018).
Wang, M. et al. Robust memristors based on layered two-dimensional materials. Nat. Elect. 1, 130–136 (2018).
Xu, R. et al. Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV. Nano Lett. 19, 2411–2417 (2019).
Pan, C. et al. Coexistence of grain-boundaries-assisted bipolar and threshold resistive switching in multilayer hexagonal boron nitride. Adv. Funct. Mater. 27, 1604811 (2017).
Shi, Y. et al. Electronic synapses made of layered two-dimensional materials. Nat. Elect. 1, 458–465 (2018).
Zhao, H. et al. Atomically thin femtojoule memristive device. Adv. Mater. 29, 1703232 (2017).
Tian, H. et al. Graphene dynamic synapse with modulatable plasticity. Nano Lett. 15, 8013–8019 (2015).
Wang, L. et al. Controllable multiple depression in a graphene oxide artificial synapse. Adv. Elec. Mater. 3, 1600244 (2017).
Wan, C. J. et al. Flexible metal oxide/graphene oxide hybrid neuromorphic transistors on flexible conducting graphene substrates. Adv. Mater. 28, 5878–5885 (2016).
Sharbati, M. T. et al. Low-power, electrochemically tunable graphene synapses for neuromorphic computing. Adv. Mater. 30, 1802353 (2018).
Zhao, X. et al. Breaking the current-retention dilemma in cation-based resistive switching devices utilizing graphene with controlled defects. Adv. Mater. 30, 1705193 (2018).
Lee, S. et al. Metal oxide-resistive memory using graphene-edge electrodes. Nat. Commun. 6, 8407 (2015).
Yi, S.-G. et al. Artificial synaptic emulators based on MoS2 flash memory devices with double floating gates. ACS Appl. Mater. Inter. 10, 31480–31487 (2018).
John, R. A. et al. Synergistic gating of electro-iono-photoactive 2D chalcogenide neuristors: Coexistence of Hebbian and homeostatic synaptic metaplasticity. Adv. Mater. 30, 1800220 (2018).
Jiang, J. et al. 2D MoS2 neuromorphic devices for brain-like computational systems. Small 13, 1700933 (2017).
Arnold, A. J. et al. Mimicking neurotransmitter release in chemical synapses via hysteresis engineering in MoS2 transistors. ACS Nano 11, 3110–3118 (2017).
Chen, M. et al. Abnormal multiple charge memory states in exfoliated few-layer WSe2 transistors. ACS Nano 11, 1091–1102 (2017).
He, G. et al. Thermally assisted nonvolatile memory in monolayer MoS2 transistors. Nano Lett. 16, 6445–6451 (2016).
Tian, H. et al. Anisotropic black phosphorus synaptic device for neuromorphic applications. Adv. Mater. 28, 4991–4997 (2016).
Das, S., Dodda, A. & Das, S. A biomimetic 2D transistor for audiomorphic computing. Nat. Commun. 10, 3450 (2019).
Sangwan, V. K., Lee, H.-S. & Hersam, M. C. Gate-tunable memristors from monolayer MoS2. In Proc. 2017 IEEE International Electron Devices Meeting 5.1.1–514 (IEEE, 2017).
Jadwiszczak, J. et al. Neuromorphic MoS2 memtransistors fabricated by localized helium ion beam irradiation. ACS Nano 13, 14262–14273 (2019).
Xie, X. et al. Room temperature 2D memristive transistor with optical short-term plasticity. In Proc. 2017 IEEE International Electron Devices Meeting 5.3.1–534 (IEEE, 2017).
Standley, B. et al. Graphene-based atomic-scale switches. Nano Lett. 8, 3345–3349 (2008).
Sarwat, S. G. et al. Scaling limits of graphene nanoelectrodes. Nano Lett. 17, 3688–3693 (2017).
Yoshida, M. et al. Memristive phase switching in two-dimensional 1T-TaS2 crystals. Sci. Adv. 1, 1500606 (2015).
Zhang, F. et al. Electric-field induced structural transition in vertical MoTe2- and Mo1-xWxTe2-based resistive memories. Nat. Mater. 18, 55–61 (2019).
Kang, J., Sangwan, V. K., Wood, J. D. & Hersam, M. C. Solution-based processing of monodisperse two-dimensional nanomaterials. Acc. Chem. Res. 50, 943–951 (2017).
Cheng, P., Sun, K. & Hu, Y. H. Memristive behavior and ideal memristor of 1T phase MoS2 nanosheets. Nano Lett. 16, 572–576 (2016).
Bessonov, A. A. et al. Layered memristive and memcapacitive switches for printable electronics. Nat. Mater. 14, 199–204 (2015).
Huh, W. et al. Synaptic barristor based on phase-engineered 2D heterostructures. Adv. Mater. 30, 1801447 (2018).
Tian, H. et al. Emulating bilingual synaptic response using a junction-based artificial synaptic device. ACS Nano 11, 7156–7163 (2017).
Sangwan, V. K. et al. Self-aligned van der Waals heterojunction diodes and transistors. Nano Lett. 18, 1421–1427 (2018).
Jariwala, D. et al. Hybrid, gate-tunable, van der Waals p-n heterojunctions from pentacene and MoS2. Nano Lett. 16, 497–503 (2016).
Jariwala, D. et al. Large-area, low-voltage, antiambipolar heterojunctions from solution-processed semiconductors. Nano Lett. 15, 416–421 (2015).
Jariwala, D. et al. Gate-tunable carbon nanotube-MoS2 heterojunction p-n diode. Proc. Natl Acad. Sci. USA 110, 18076–18080 (2013).
Crespo, J. L., Duro, R. J. & Pena, F. L. Gaussian synapse ANNs in multi- and hyperspectral image data analysis. IEEE Trans. Instr. Meas. 52, 724–732 (2003).
Sebastian, A., Pannone, A., Subbulakshmi Radhakrishnan, S. & Das, S. Gaussian synapses for probabilistic neural networks. Nat. Commun. 10, 4199 (2019).
Zou, X., Liu, M., Shi, Z. & Yakobson, B. I. Environment-controlled dislocation migration and superplasticity in monolayer MoS2. Nano Lett. 15, 3495–3500 (2015).
Onofrio, N., Guzman, D. & Strachan, A. Atomic origin of ultrafast resistance switching in nanoscale electrometallization cells. Nat. Mater. 14, 440–446 (2015).
Li, D. et al. MoS2 memristors exhibiting variable switching characteristics toward biorealistic synaptic emulation. ACS Nano 12, 9240–9252 (2018).
Yin, X. et al. Edge nonlinear optics on a MoS2 atomic monolayer. Science 344, 488–490 (2014).
Brooks, R. A. Intelligence without representation. Art. Intell. 47, 139–159 (1991).
Strukov, D. B. & Williams, R. S. Four-dimensional address topology for circuits with stacked multilayer crossbar arrays. Proc. Natl Acad. Sci. USA 106, 20155–20158 (2009).
Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016).
Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).
O’Reilly, R. C. Biologically based computational models of high-level cognition. Science 314, 91–94 (2006).
Acknowledgements
The work was supported by the National Science Foundation Materials Research Science and Engineering Center at Northwestern University (NSF DMR-1720139).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Nanotechnology thanks Yuchao Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Sangwan, V.K., Hersam, M.C. Neuromorphic nanoelectronic materials. Nat. Nanotechnol. 15, 517–528 (2020). https://doi.org/10.1038/s41565-020-0647-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41565-020-0647-z
This article is cited by
-
Electrically and mechanically driven rotation of polar spirals in a relaxor ferroelectric polymer
Nature Communications (2024)
-
Neuromorphic antennal sensory system
Nature Communications (2024)
-
An artificial visual neuron with multiplexed rate and time-to-first-spike coding
Nature Communications (2024)
-
General synthesis of ionic-electronic coupled two-dimensional materials
Nature Communications (2024)
-
Bistable organic electrochemical transistors: enthalpy vs. entropy
Nature Communications (2024)