Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neuromorphic nanoelectronic materials


Memristive and nanoionic devices have recently emerged as leading candidates for neuromorphic computing architectures. While top-down fabrication based on conventional bulk materials has enabled many early neuromorphic devices and circuits, bottom-up approaches based on low-dimensional nanomaterials have shown novel device functionality that often better mimics a biological neuron. In addition, the chemical, structural and compositional tunability of low-dimensional nanomaterials coupled with the permutational flexibility enabled by van der Waals heterostructures offers significant opportunities for artificial neural networks. In this Review, we present a critical survey of emerging neuromorphic devices and architectures enabled by quantum dots, metal nanoparticles, polymers, nanotubes, nanowires, two-dimensional layered materials and van der Waals heterojunctions with a particular emphasis on bio-inspired device responses that are uniquely enabled by low-dimensional topology, quantum confinement and interfaces. We also provide a forward-looking perspective on the opportunities and challenges of neuromorphic nanoelectronic materials in comparison with more mature technologies based on traditional bulk electronic materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Synaptic transistors and memristive systems.
Fig. 2: Zero-dimensional nanomaterials for electronic and optoelectronic synapses.
Fig. 3: One-dimensional nanomaterials for neuromorphic circuits.
Fig. 4: Memristive systems from 2D nanomaterials.
Fig. 5: Device metrics and mechanisms.
Fig. 6: Biomimetic and biocompatible neuromorphic systems.


  1. 1.

    Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (The MIT Press, 2016).

  2. 2.

    LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    CAS  Google Scholar 

  3. 3.

    James, C. D. et al. A historical survey of algorithms and hardware architectures for neural-inspired and neuromorphic computing applications. Biol. Insp. Cog. Arch. 19, 49–64 (2017).

    Google Scholar 

  4. 4.

    Schuman, C. D. et al. A survey of neuromorphic computing and neural networks in hardware. Preprint at (2018).

  5. 5.

    Bear, M. F., Connors, B. W. & Paradiso, M. A. Neuroscience: Exploring the Brain (Wolters Kluwer, 2015).

  6. 6.

    Indiveri, G., Chicca, E. & Douglas, R. J. Artificial cognitive systems: From VLSI networks of spiking neurons to neuromorphic cognition. Cogn. Comp. 1, 119–127 (2009).

    Google Scholar 

  7. 7.

    Indiveri, G. et al. Neuromorphic silicon neuron circuits. Front. Neuro. 5, 73 (2011).

    Google Scholar 

  8. 8.

    Krestinskaya, O., James, A. P. & Leon, C. O. Neuro-memristive circuits for edge computing: A review. IEEE Trans. Neural Netw. Learn. Syst. 31, 4–23 (2020).

    Google Scholar 

  9. 9.

    Jeong, D. S. et al. Memristors for energy-efficient new computing paradigms. Adv. Elec. Mater. 2, 1600090 (2016).

    Google Scholar 

  10. 10.

    Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013).

    CAS  Google Scholar 

  11. 11.

    Merolla, P. A. et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668–673 (2014).

    CAS  Google Scholar 

  12. 12.

    Furber, S. B., Galluppi, F., Temple, S. & Plana, L. A. The SpiNNaker project. Proc. IEEE 102, 652–665 (2014).

    Google Scholar 

  13. 13.

    Tuma, T. et al. Stochastic phase-change neurons. Nat. Nanotechnol. 11, 693–699 (2016).

    CAS  Google Scholar 

  14. 14.

    Duygu, K., Shimeng, Y. & Wong, H. S. P. Synaptic electronics: materials, devices and applications. Nanotechnology 24, 382001 (2013).

    Google Scholar 

  15. 15.

    Wong, H. S. P. et al. Metal-oxide RRAM. Proc. IEEE 100, 1951–1970 (2012).

    CAS  Google Scholar 

  16. 16.

    Yu, S. & Chen, P. Y. Emerging memory technologies: Recent trends and prospects. IEEE Sol. Stat. Circuit Mag. 8, 43–56 (2016).

    Google Scholar 

  17. 17.

    Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    CAS  Google Scholar 

  18. 18.

    Sengupta, A. & Roy, K. Neuromorphic computing enabled by physics of electron spins: Prospects and perspectives. Appl. Phys. Exp. 11, 030101 (2018).

    Google Scholar 

  19. 19.

    Prezioso, M. et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015).

    CAS  Google Scholar 

  20. 20.

    Burr, G. W. et al. Neuromorphic computing using non-volatile memory. Adv. Phys. X 2, 89–124 (2017).

    Google Scholar 

  21. 21.

    Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive systems. Nat. Elect. 1, 22–29 (2018).

    Google Scholar 

  22. 22.

    Wang, Z. et al. Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 1, 137–145 (2018).

    Google Scholar 

  23. 23.

    Zidan, M. A. et al. A general memristor-based partial differential equation solver. Nat. Electron. 1, 411–420 (2018).

    Google Scholar 

  24. 24.

    Sun, Z. et al. Solving matrix equations in one step with cross-point resistive arrays. Proc. Natl Acad. Sci. USA 116, 4123–4128 (2019).

    CAS  Google Scholar 

  25. 25.

    Bayat, F. M. et al. Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits. Nat. Commun. 9, 2331 (2018).

    Google Scholar 

  26. 26.

    Prezioso, M. et al. Spike-timing-dependent plasticity learning of coincidence detection with passively integrated memristive circuits. Nat. Commun. 9, 5311 (2018).

    CAS  Google Scholar 

  27. 27.

    Shulaker, M. M. et al. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 547, 74–78 (2017).

    CAS  Google Scholar 

  28. 28.

    Jariwala, D. et al. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem. Soc. Rev. 42, 2824–2860 (2013).

    CAS  Google Scholar 

  29. 29.

    Jariwala, D. et al. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8, 1102–1120 (2014).

    CAS  Google Scholar 

  30. 30.

    Sangwan, V. K. & Hersam, M. C. Electronic transport in two-dimensional materials. Annu. Rev. Phys. Chem. 69, 299–325 (2018).

    CAS  Google Scholar 

  31. 31.

    Jariwala, D., Marks, T. J. & Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 16, 170–181 (2016).

    Google Scholar 

  32. 32.

    Upadhyay, N. K. et al. Emerging memory devices for neuromorphic computing. Adv. Mater. Tech. 4, 1800589 (2019).

    Google Scholar 

  33. 33.

    Sangwan, V. K. et al. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554, 500–504 (2018).

    CAS  Google Scholar 

  34. 34.

    Sun, L. et al. Synaptic computation enabled by Joule heating of single-layered semiconductors for sound localization. Nano Lett. 18, 3229–3234 (2018).

    CAS  Google Scholar 

  35. 35.

    Zhu, X., Li, D., Liang, X. & Lu, W. D. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 18, 141–148 (2018).

    Google Scholar 

  36. 36.

    van de Burgt, Y. et al. Organic electronics for neuromorphic computing. Nat. Electron 1, 386–397 (2018).

    Google Scholar 

  37. 37.

    Rivnay, J. et al. Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018).

    CAS  Google Scholar 

  38. 38.

    Sanchez Esqueda, I. et al. Aligned carbon nanotube synaptic transistors for large-scale neuromorphic computing. ACS Nano 12, 7352–7361 (2018).

    CAS  Google Scholar 

  39. 39.

    Kim, S. et al. Pattern recognition using carbon nanotube synaptic transistors with an adjustable weight update protocol. ACS Nano 11, 2814–2822 (2017).

    CAS  Google Scholar 

  40. 40.

    Zhu, J. et al. Ion gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamics. Adv. Mater. 30, 1800195 (2018).

    Google Scholar 

  41. 41.

    Wang, S. et al. A MoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility. Adv. Mater. 31, 1806227 (2018).

    Google Scholar 

  42. 42.

    Kim, Y. et al. A bioinspired flexible organic artificial afferent nerve. Science 360, 998–1003 (2018).

    CAS  Google Scholar 

  43. 43.

    Ziegler, M., Wenger, C., Chicca, E. & Kohlstedt, H. Tutorial: Concepts for closely mimicking biological learning with memristive devices: Principles to emulate cellular forms of learning. J. Appl. Phys. 124, 152003 (2018).

    Google Scholar 

  44. 44.

    McCulloch, W. S. & Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115 (1943).

    Google Scholar 

  45. 45.

    Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psych. Rev. 65, 386–408 (1958).

    CAS  Google Scholar 

  46. 46.

    Hertz, J., Krogh, A. & Palmer, R. G. Introduction to the Theory of Neural Computation (Westview Press, 1991).

  47. 47.

    Wasserman, P. D. Neural Computing: Theory and Practice (Van Nostrand Reinhold, 1965).

  48. 48.

    Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physio. 117, 500–544 (1952).

    CAS  Google Scholar 

  49. 49.

    Leon, C. Memristor, Hodgkin–Huxley, and edge of chaos. Nanotechnology 24, 383001 (2013).

    Google Scholar 

  50. 50.

    Pershin, Y. V. & Di Ventra, M. Memory effects in complex materials and nanoscale systems. Adv. Phys. 60, 145–227 (2011).

    Google Scholar 

  51. 51.

    Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).

    Google Scholar 

  52. 52.

    Minsky, M. A Neural-Analogue Calculator Based Upon a Probability Model of Reinforcement (Harvard University Psychological Laboratories, 1952).

  53. 53.

    Diorio, C., Hasler, P., Minch, A. & Mead, C. A. A single-transistor silicon synapse. IEEE Trans. Electron. Dev. 43, 1972–1980 (1996).

    CAS  Google Scholar 

  54. 54.

    Buonomano, D. V. & Maass, W. State-dependent computations: spatiotemporal processing in cortical networks. Nat. Rev. Neurosci. 10, 113 (2009).

    CAS  Google Scholar 

  55. 55.

    Qian, C. et al. Multi-gate organic neuron transistors for spatiotemporal information processing. Appl. Phys. Lett. 110, 083302 (2017).

    Google Scholar 

  56. 56.

    Lanza, M. et al. Recommended methods to study resistive switching devices. Adv. Elec. Mater. 5, 1800143 (2019).

    Google Scholar 

  57. 57.

    Pi, S. et al. Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension. Nat. Nanotechnol. 14, 35–39 (2018).

    Google Scholar 

  58. 58.

    Seok, J. Y. et al. A review of three-dimensional resistive switching cross-bar array memories from the integration and materials property points of view. Adv. Funct. Mater. 24, 5316–5339 (2014).

    CAS  Google Scholar 

  59. 59.

    Waser, R., Dittmann, R., Staikov, G. & Szot, K. Redox-based resistive switching memories – Nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009).

    CAS  Google Scholar 

  60. 60.

    Tan, C., Liu, Z., Huang, W. & Zhang, H. Non-volatile resistive memory devices based on solution-processed ultrathin two-dimensional nanomaterials. Chem. Soc. Rev. 44, 2615–2628 (2015).

    CAS  Google Scholar 

  61. 61.

    Yang, J. J. et al. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429–433 (2008).

    CAS  Google Scholar 

  62. 62.

    Pickett, M. D., Medeiros-Ribeiro, G. & Williams, R. S. A scalable neuristor built with Mott memristors. Nat. Mater. 12, 114–117 (2013).

    CAS  Google Scholar 

  63. 63.

    Chang, S. et al. Occurrence of both unipolar memory and threshold resistance switching in a NiO film. Phys. Rev. Lett. 102, 026801 (2009).

    CAS  Google Scholar 

  64. 64.

    Linn, E., Rosezin, R., Kugeler, C. & Waser, R. Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9, 403–406 (2010).

    CAS  Google Scholar 

  65. 65.

    Kumar, S., Strachan, J. P. & Williams, R. S. Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature 548, 318–321 (2017).

    CAS  Google Scholar 

  66. 66.

    Wang, Z. et al. Capacitive neural network with neuro-transistors. Nat. Commun. 9, 3208 (2018).

    Google Scholar 

  67. 67.

    Wang, Z. et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2017).

    CAS  Google Scholar 

  68. 68.

    Chua, L. O. & Sung, Mo,K. Memristive devices and systems. Proc. IEEE 64, 209–223 (1976).

    Google Scholar 

  69. 69.

    Abdelouahab, M.-S., Lozi, R. & Chua, L. Memfractance: A mathematical paradigm for circuit elements with memory. Intern. J. Bifur. Chaos Appl. Sci. Engrg. 24, 1430023 (2014).

    Google Scholar 

  70. 70.

    Kim, S. et al. Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity. Nano Lett. 15, 2203–2211 (2015).

    CAS  Google Scholar 

  71. 71.

    Xia, Q. et al. Two- and three-terminal resistive switches: Nanometer-scale memristors and memistors. Adv. Funct. Mater. 21, 2660–2665 (2011).

    CAS  Google Scholar 

  72. 72.

    Yang, Y., Chen, B. & Lu, W. D. Memristive physically evolving networks enabling the emulation of heterosynaptic plasticity. Adv. Mater. 27, 7720–7727 (2015).

    CAS  Google Scholar 

  73. 73.

    Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysio. 80, 1–27 (1998).

    CAS  Google Scholar 

  74. 74.

    Sangwan, V. K. et al. Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nat. Nanotechnol. 10, 403–406 (2015).

    CAS  Google Scholar 

  75. 75.

    Yang, Y. et al. Three-terminal memtransistors based on two-dimensional layered gallium selenide nanosheets for potential low-power electronics applications. Nano Energy 57, 566–573 (2019).

    CAS  Google Scholar 

  76. 76.

    Wang, L. et al. Artificial synapses based on multiterminal memtransistors for neuromorphic application. Adv. Funct. Mater. 29, 1901106 (2019).

    Google Scholar 

  77. 77.

    Mouttet, B. Memristive systems analysis of 3-terminal devices. In Proc. 2010 17th IEEE International Conference on Electronics, Circuits and Systems 930–933 (IEEE, 2010).

  78. 78.

    Caporale, N. & Dan, Y. Spike timing–dependent plasticity: A Hebbian learning rule. Ann. Rev. Neuro. 31, 25–46 (2008).

    CAS  Google Scholar 

  79. 79.

    Bi, G.-q & Poo, M.-m Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neuro. 18, 10464–10472 (1998).

    CAS  Google Scholar 

  80. 80.

    Sun, C. et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534–538 (2015).

    CAS  Google Scholar 

  81. 81.

    Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018).

    CAS  Google Scholar 

  82. 82.

    Mesaritakis, C., Kapsalis, A., Bogris, A. & Syvridis, D. Artificial neuron based on integrated semiconductor quantum dot mode-locked lasers. Sci. Rep. 6, 39317 (2016).

    CAS  Google Scholar 

  83. 83.

    Maier, P. et al. Electro-photo-sensitive memristor for neuromorphic and arithmetic computing. Phys. Rev. Appl. 5, 054011 (2016).

    Google Scholar 

  84. 84.

    Maier, P. et al. Memristive operation mode of a site-controlled quantum dot floating gate transistor. Appl. Phys. Lett. 106, 203501 (2015).

    Google Scholar 

  85. 85.

    Wang, Y. et al. Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 30, 1802883 (2018).

    Google Scholar 

  86. 86.

    Han, S.-T. et al. Black phosphorus quantum dots with tunable memory properties and multilevel resistive switching characteristics. Adv. Sci. 4, 1600435 (2017).

    Google Scholar 

  87. 87.

    Alibart, F. et al. An organic nanoparticle transistor behaving as a biological spiking synapse. Adv. Funct. Mater. 20, 330–337 (2010).

    CAS  Google Scholar 

  88. 88.

    Goswami, S. et al. Robust resistive memory devices using solution-processable metal-coordinated azo aromatics. Nat. Mater. 16, 1216–1224 (2017).

    CAS  Google Scholar 

  89. 89.

    Chua, L. O. Nonlinear circuit foundations for nanodevices. I. The four-element torus. Proc. IEEE 91, 1830–1859 (2003).

    CAS  Google Scholar 

  90. 90.

    Roychowdhury, V. P., Janes, D. B., Bandyopadhyay, S. & Xiaodong, W. Collective computational activity in self-assembled arrays of quantum dots: a novel neuromorphic architecture for nanoelectronics. IEEE Trans. Electron. Dev. 43, 1688–1699 (1996).

    CAS  Google Scholar 

  91. 91.

    Altaisky, M. V. et al. Towards a feasible implementation of quantum neural networks using quantum dots. Appl. Phys. Lett. 108, 103108 (2016).

    Google Scholar 

  92. 92.

    Cao, Q. et al. Carbon nanotube transistors scaled to a 40-nanometer footprint. Science 356, 1369–1372 (2017).

    CAS  Google Scholar 

  93. 93.

    Joshi, J., Parker, A. C. & Hsu, C. A carbon nanotube cortical neuron with spike-timing-dependent plasticity. In Proc. 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 1651–1654 (IEEE, 2009).

  94. 94.

    Kim, S., Yoon, J., Kim, H.-D. & Choi, S.-J. Carbon nanotube synaptic transistor network for pattern recognition. ACS Appl. Mater. Inter. 7, 25479–25486 (2015).

    CAS  Google Scholar 

  95. 95.

    Shen, A. M. et al. Analog neuromorphic module based on carbon nanotube synapses. ACS Nano 7, 6117–6122 (2013).

    CAS  Google Scholar 

  96. 96.

    Kim, K. et al. A carbon nanotube synapse with dynamic logic and learning. Adv. Mater. 25, 1693–1698 (2013).

    CAS  Google Scholar 

  97. 97.

    Feng, P. et al. Printed neuromorphic devices based on printed carbon nanotube thin-film transistors. Adv. Funct. Mater. 27, 1604447 (2017).

    Google Scholar 

  98. 98.

    Danesh, C. D. et al. Synaptic resistors for concurrent inference and learning with high energy efficiency. Adv. Mater. 31, 1808032 (2019).

    Google Scholar 

  99. 99.

    Duan, X., Huang, Y. & Lieber, C. M. Nonvolatile memory and programmable logic from molecule-gated nanowires. Nano Lett. 2, 487–490 (2002).

    CAS  Google Scholar 

  100. 100.

    Younis, A. et al. High-performance nanocomposite based memristor with controlled quantum dots as charge traps. ACS Appl. Mater. Inter. 5, 2249–2254 (2013).

    CAS  Google Scholar 

  101. 101.

    Milano, G. et al. Self-limited single nanowire systems combining all-in-one memristive and neuromorphic functionalities. Nat. Commun. 9, 5151 (2018).

    Google Scholar 

  102. 102.

    Hong, D. S., Chen, Y. S., Sun, J. R. & Shen, B. G. Ternary synaptic plasticity arising from memdiode behavior of TiOx single nanowires. Adv. Elec. Mater. 2, 1500359 (2016).

    Google Scholar 

  103. 103.

    O’Kelly, C. J. et al. Associative enhancement of time correlated response to heterogeneous stimuli in a neuromorphic nanowire device. Adv. Elec. Mater. 2, 1500458 (2016).

    Google Scholar 

  104. 104.

    Xu, W., Min, S.-Y., Hwang, H. & Lee, T.-W. Organic core-sheath nanowire artificial synapses with femtojoule energy consumption. Sci. Adv. 2, e1501326 (2016).

    Google Scholar 

  105. 105.

    Shainline, J. M., Buckley, S. M., Mirin, R. P. & Nam, S. W. Superconducting optoelectronic circuits for neuromorphic computing. Phys. Rev. Appl. 7, 034013 (2017).

    Google Scholar 

  106. 106.

    Cho, B. et al. Organic resistive memory devices: Performance enhancement, integration, and advanced architectures. Adv. Funct. Mater. 21, 2806–2829 (2011).

    CAS  Google Scholar 

  107. 107.

    Zhitenev, N. B., Sidorenko, A., Tennant, D. M. & Cirelli, R. A. Chemical modification of the electronic conducting states in polymer nanodevices. Nat. Nanotechnol. 2, 237–242 (2007).

    CAS  Google Scholar 

  108. 108.

    Ji, Y. et al. Flexible and twistable non-volatile memory cell array with all-organic one diode–one resistor architecture. Nat. Commun. 4, 2707 (2013).

    Google Scholar 

  109. 109.

    Lai, Q. et al. Ionic/electronic hybrid materials integrated in a synaptic transistor with signal processing and learning functions. Adv. Mater. 22, 2448–2453 (2010).

    CAS  Google Scholar 

  110. 110.

    Fuller, E. J. et al. Li-ion synaptic transistor for low power analog computing. Adv. Mater. 29, 1604310 (2017).

    Google Scholar 

  111. 111.

    van de Burgt, Y. et al. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414–418 (2017).

    Google Scholar 

  112. 112.

    Fuller, E. J. et al. Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science 364, 570–574 (2019).

    CAS  Google Scholar 

  113. 113.

    Gkoupidenis, P. et al. Orientation selectivity in a multi-gated organic electrochemical transistor. Sci. Rep. 6, 27007 (2016).

    CAS  Google Scholar 

  114. 114.

    Gkoupidenis, P., Koutsouras, D. A. & Malliaras, G. G. Neuromorphic device architectures with global connectivity through electrolyte gating. Nat. Commun. 8, 15448 (2017).

    CAS  Google Scholar 

  115. 115.

    Castro Neto, A. H. et al. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    CAS  Google Scholar 

  116. 116.

    Grigorieva, I. V. & Geim, A. K. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Google Scholar 

  117. 117.

    Kim, M. et al. Zero-static power radio-frequency switches based on MoS2 atomristors. Nat. Commun. 9, 2524 (2018).

    Google Scholar 

  118. 118.

    Ge, R. et al. Atomristor: Nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides. Nano Lett. 18, 434–441 (2018).

    CAS  Google Scholar 

  119. 119.

    Wang, M. et al. Robust memristors based on layered two-dimensional materials. Nat. Elect. 1, 130–136 (2018).

    CAS  Google Scholar 

  120. 120.

    Xu, R. et al. Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV. Nano Lett. 19, 2411–2417 (2019).

    CAS  Google Scholar 

  121. 121.

    Pan, C. et al. Coexistence of grain-boundaries-assisted bipolar and threshold resistive switching in multilayer hexagonal boron nitride. Adv. Funct. Mater. 27, 1604811 (2017).

    Google Scholar 

  122. 122.

    Shi, Y. et al. Electronic synapses made of layered two-dimensional materials. Nat. Elect. 1, 458–465 (2018).

    Google Scholar 

  123. 123.

    Zhao, H. et al. Atomically thin femtojoule memristive device. Adv. Mater. 29, 1703232 (2017).

    Google Scholar 

  124. 124.

    Tian, H. et al. Graphene dynamic synapse with modulatable plasticity. Nano Lett. 15, 8013–8019 (2015).

    CAS  Google Scholar 

  125. 125.

    Wang, L. et al. Controllable multiple depression in a graphene oxide artificial synapse. Adv. Elec. Mater. 3, 1600244 (2017).

    Google Scholar 

  126. 126.

    Wan, C. J. et al. Flexible metal oxide/graphene oxide hybrid neuromorphic transistors on flexible conducting graphene substrates. Adv. Mater. 28, 5878–5885 (2016).

    CAS  Google Scholar 

  127. 127.

    Sharbati, M. T. et al. Low-power, electrochemically tunable graphene synapses for neuromorphic computing. Adv. Mater. 30, 1802353 (2018).

    Google Scholar 

  128. 128.

    Zhao, X. et al. Breaking the current-retention dilemma in cation-based resistive switching devices utilizing graphene with controlled defects. Adv. Mater. 30, 1705193 (2018).

    Google Scholar 

  129. 129.

    Lee, S. et al. Metal oxide-resistive memory using graphene-edge electrodes. Nat. Commun. 6, 8407 (2015).

    Google Scholar 

  130. 130.

    Yi, S.-G. et al. Artificial synaptic emulators based on MoS2 flash memory devices with double floating gates. ACS Appl. Mater. Inter. 10, 31480–31487 (2018).

    CAS  Google Scholar 

  131. 131.

    John, R. A. et al. Synergistic gating of electro-iono-photoactive 2D chalcogenide neuristors: Coexistence of Hebbian and homeostatic synaptic metaplasticity. Adv. Mater. 30, 1800220 (2018).

    Google Scholar 

  132. 132.

    Jiang, J. et al. 2D MoS2 neuromorphic devices for brain-like computational systems. Small 13, 1700933 (2017).

    Google Scholar 

  133. 133.

    Arnold, A. J. et al. Mimicking neurotransmitter release in chemical synapses via hysteresis engineering in MoS2 transistors. ACS Nano 11, 3110–3118 (2017).

    CAS  Google Scholar 

  134. 134.

    Chen, M. et al. Abnormal multiple charge memory states in exfoliated few-layer WSe2 transistors. ACS Nano 11, 1091–1102 (2017).

    CAS  Google Scholar 

  135. 135.

    He, G. et al. Thermally assisted nonvolatile memory in monolayer MoS2 transistors. Nano Lett. 16, 6445–6451 (2016).

    CAS  Google Scholar 

  136. 136.

    Tian, H. et al. Anisotropic black phosphorus synaptic device for neuromorphic applications. Adv. Mater. 28, 4991–4997 (2016).

    CAS  Google Scholar 

  137. 137.

    Das, S., Dodda, A. & Das, S. A biomimetic 2D transistor for audiomorphic computing. Nat. Commun. 10, 3450 (2019).

    Google Scholar 

  138. 138.

    Sangwan, V. K., Lee, H.-S. & Hersam, M. C. Gate-tunable memristors from monolayer MoS2. In Proc. 2017 IEEE International Electron Devices Meeting 5.1.1–514 (IEEE, 2017).

  139. 139.

    Jadwiszczak, J. et al. Neuromorphic MoS2 memtransistors fabricated by localized helium ion beam irradiation. ACS Nano 13, 14262–14273 (2019).

    CAS  Google Scholar 

  140. 140.

    Xie, X. et al. Room temperature 2D memristive transistor with optical short-term plasticity. In Proc. 2017 IEEE International Electron Devices Meeting 5.3.1–534 (IEEE, 2017).

  141. 141.

    Standley, B. et al. Graphene-based atomic-scale switches. Nano Lett. 8, 3345–3349 (2008).

    CAS  Google Scholar 

  142. 142.

    Sarwat, S. G. et al. Scaling limits of graphene nanoelectrodes. Nano Lett. 17, 3688–3693 (2017).

    CAS  Google Scholar 

  143. 143.

    Yoshida, M. et al. Memristive phase switching in two-dimensional 1T-TaS2 crystals. Sci. Adv. 1, 1500606 (2015).

    Google Scholar 

  144. 144.

    Zhang, F. et al. Electric-field induced structural transition in vertical MoTe2- and Mo1-xWxTe2-based resistive memories. Nat. Mater. 18, 55–61 (2019).

    CAS  Google Scholar 

  145. 145.

    Kang, J., Sangwan, V. K., Wood, J. D. & Hersam, M. C. Solution-based processing of monodisperse two-dimensional nanomaterials. Acc. Chem. Res. 50, 943–951 (2017).

    CAS  Google Scholar 

  146. 146.

    Cheng, P., Sun, K. & Hu, Y. H. Memristive behavior and ideal memristor of 1T phase MoS2 nanosheets. Nano Lett. 16, 572–576 (2016).

    CAS  Google Scholar 

  147. 147.

    Bessonov, A. A. et al. Layered memristive and memcapacitive switches for printable electronics. Nat. Mater. 14, 199–204 (2015).

    CAS  Google Scholar 

  148. 148.

    Huh, W. et al. Synaptic barristor based on phase-engineered 2D heterostructures. Adv. Mater. 30, 1801447 (2018).

    Google Scholar 

  149. 149.

    Tian, H. et al. Emulating bilingual synaptic response using a junction-based artificial synaptic device. ACS Nano 11, 7156–7163 (2017).

    CAS  Google Scholar 

  150. 150.

    Sangwan, V. K. et al. Self-aligned van der Waals heterojunction diodes and transistors. Nano Lett. 18, 1421–1427 (2018).

    CAS  Google Scholar 

  151. 151.

    Jariwala, D. et al. Hybrid, gate-tunable, van der Waals p-n heterojunctions from pentacene and MoS2. Nano Lett. 16, 497–503 (2016).

    CAS  Google Scholar 

  152. 152.

    Jariwala, D. et al. Large-area, low-voltage, antiambipolar heterojunctions from solution-processed semiconductors. Nano Lett. 15, 416–421 (2015).

    CAS  Google Scholar 

  153. 153.

    Jariwala, D. et al. Gate-tunable carbon nanotube-MoS2 heterojunction p-n diode. Proc. Natl Acad. Sci. USA 110, 18076–18080 (2013).

    CAS  Google Scholar 

  154. 154.

    Crespo, J. L., Duro, R. J. & Pena, F. L. Gaussian synapse ANNs in multi- and hyperspectral image data analysis. IEEE Trans. Instr. Meas. 52, 724–732 (2003).

    Google Scholar 

  155. 155.

    Sebastian, A., Pannone, A., Subbulakshmi Radhakrishnan, S. & Das, S. Gaussian synapses for probabilistic neural networks. Nat. Commun. 10, 4199 (2019).

    Google Scholar 

  156. 156.

    Zou, X., Liu, M., Shi, Z. & Yakobson, B. I. Environment-controlled dislocation migration and superplasticity in monolayer MoS2. Nano Lett. 15, 3495–3500 (2015).

    CAS  Google Scholar 

  157. 157.

    Onofrio, N., Guzman, D. & Strachan, A. Atomic origin of ultrafast resistance switching in nanoscale electrometallization cells. Nat. Mater. 14, 440–446 (2015).

    CAS  Google Scholar 

  158. 158.

    Li, D. et al. MoS2 memristors exhibiting variable switching characteristics toward biorealistic synaptic emulation. ACS Nano 12, 9240–9252 (2018).

    CAS  Google Scholar 

  159. 159.

    Yin, X. et al. Edge nonlinear optics on a MoS2 atomic monolayer. Science 344, 488–490 (2014).

    CAS  Google Scholar 

  160. 160.

    Brooks, R. A. Intelligence without representation. Art. Intell. 47, 139–159 (1991).

    Google Scholar 

  161. 161.

    Strukov, D. B. & Williams, R. S. Four-dimensional address topology for circuits with stacked multilayer crossbar arrays. Proc. Natl Acad. Sci. USA 106, 20155–20158 (2009).

    CAS  Google Scholar 

  162. 162.

    Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016).

    CAS  Google Scholar 

  163. 163.

    Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).

    CAS  Google Scholar 

  164. 164.

    O’Reilly, R. C. Biologically based computational models of high-level cognition. Science 314, 91–94 (2006).

    Google Scholar 

Download references


The work was supported by the National Science Foundation Materials Research Science and Engineering Center at Northwestern University (NSF DMR-1720139).

Author information



Corresponding author

Correspondence to Mark C. Hersam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Yuchao Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sangwan, V.K., Hersam, M.C. Neuromorphic nanoelectronic materials. Nat. Nanotechnol. 15, 517–528 (2020).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research