Power generation by reverse electrodialysis in a single-layer nanoporous membrane made from core–rim polycyclic aromatic hydrocarbons


Nanoporous graphene and related atomically thin layered materials are promising candidates in reverse electrodialysis research owing to their remarkable ionic conductivity and high permselectivity. The synthesis of atomically thin nanoporous membranes with a narrow pore size distribution, however, remains challenging. Here, we report the fabrication of nanoporous carbon membranes via the thermal crosslinking of core–rim structured monomers, that is, polycyclic aromatic hydrocarbons. The mechanically robust, centimetre-sized membrane has a pore size of 3.6 ± 1.8 nm and a thickness of 2.0 ± 0.5 nm. When applied to reverse electrodialysis, the nanoporous carbon membrane offers a high short-circuit current with an output power density of 67 W m−2, which is about two orders of magnitude beyond that of the classic ion-exchange membranes and current prototype nanoporous membranes reported in the literature. Crosslinked and atomically thin porous polycyclic aromatic hydrocarbon membranes therefore represent new scaffolds that will revolutionize the rapidly developing fields of sustainable energy and membrane technology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The preparation of atomically thin nanoporous carbon membranes.
Fig. 2: Characterization of the membrane prepared at 10 mN m−1.
Fig. 3: Pore density and transmembrane ionic current measurements.
Fig. 4: Reverse electrodialysis performance of the membrane prepared at 10 mN m–1.

Data availability

Source data for Figs. 14 and Extended Data Fig. 1 are provided with the paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.


  1. 1.

    Logan, B. E. & Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 488, 313–319 (2012).

    CAS  Google Scholar 

  2. 2.

    Schroeder, T. B. H. et al. An electric-eel-inspired soft power source from stacked hydrogels. Nature 552, 214–218 (2017).

    CAS  Google Scholar 

  3. 3.

    Mei, Y. & Tang, C. Y. Recent developments and future perspectives of reverse electrodialysis technology: a review. Desalination 425, 156–174 (2018).

    CAS  Google Scholar 

  4. 4.

    Yip, N. Y., Brogioli, D., Hamelers, H. V. M. & Nijmeijer, K. Salinity gradients for sustainable energy: primer, progress, and prospects. Environ. Sci. Technol. 50, 12072–12094 (2016).

    CAS  Google Scholar 

  5. 5.

    Giorno, L, Drioli, E. & Strathmann, H. Permselectivity of ion-exchange membranes in Encyclopedia of Membranes (Springer, 2016).

  6. 6.

    Guo, X. et al. Permselectivity and conductivity of membranes based on sulfonated naphthalenic copolyimides. J. Phys. Chem. B 111, 13694–13702 (2007).

    CAS  Google Scholar 

  7. 7.

    Yip, N. Y. & Elimelech, M. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis. Environ. Sci. Technol. 48, 11002–11012 (2014).

    CAS  Google Scholar 

  8. 8.

    Geise, G. M., Hickner, M. A. & Logan, B. E. Ionic resistance and permselectivity tradeoffs in anion exchange membranes. ACS Appl. Mater. Interfaces 5, 10294–10301 (2013).

    CAS  Google Scholar 

  9. 9.

    Macha, M., Marion, S., Nandigana, V. V. R. & Radenovic, A. 2D materials as an emerging platform for nanopore-based power generation. Nat. Rev. Mater. 4, 588–605 (2019).

    CAS  Google Scholar 

  10. 10.

    Sint, K., Wang, B. & Král, P. Selective ion passage through functionalized graphene nanopores. J. Am. Chem. Soc. 130, 16448–16449 (2008).

    CAS  Google Scholar 

  11. 11.

    Siria, A. et al. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 494, 455–458 (2013).

    CAS  Google Scholar 

  12. 12.

    Feng, J. D. et al. Single-layer MoS2 nanopores as nanopower generators. Nature 536, 197–200 (2016).

    CAS  Google Scholar 

  13. 13.

    Yang, Y. et al. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science 364, 1057–1062 (2019).

    CAS  Google Scholar 

  14. 14.

    Moreno, C. et al. Bottom-up synthesis of multifunctional nanoporous graphene. Science 360, 199–203 (2018).

    CAS  Google Scholar 

  15. 15.

    Angelova, P. et al. A universal scheme to convert aromatic molecular monolayers into functional carbon nanomembranes. ACS Nano 7, 6489–6497 (2013).

    CAS  Google Scholar 

  16. 16.

    Bauer, T. et al. Synthesis of free-standing, monolayered organometallic sheets at the air/water interface. Angew. Chem. Int. Ed. 50, 7879–7884 (2011).

    CAS  Google Scholar 

  17. 17.

    Zheng, Z. et al. Synthesis of two-dimensional analogues of copolymers by site-to-site transmetalation of organometallic monolayer sheets. J. Am. Chem. Soc. 136, 6103–6110 (2014).

    CAS  Google Scholar 

  18. 18.

    Nishikata, Y., Konishi, T., Morikawa, A., Kakimoto, M.-a. & Imai, Y. Preparation and monolayer thickness of Langmuir–Blodgett films of polyimides having various chemical structures. Polym. J. 20, 269–272 (1988).

    CAS  Google Scholar 

  19. 19.

    Silva, N. J., Machado, F. B. C., Lischka, H. & Aquino, A. J. A. π–π stacking between polyaromatic hydrocarbon sheets beyond dispersion interactions. Phys. Chem. Chem. Phys. 18, 22300–22310 (2016).

    CAS  Google Scholar 

  20. 20.

    Schneider, G. F., Calado, V. E., Zandbergen, H., Vandersypen, L. M. K. & Dekker, C. Wedging transfer of nanostructures. Nano Lett. 10, 1912–1916 (2010).

    CAS  Google Scholar 

  21. 21.

    Bilkan, M. T., Şahin, O. & Yurdakul, Ş. Experimental and DFT studies of solvent effects on molecular structure and physical properties of dipyridylamine pyridine based ligand. J. Mol. Struct. 1133, 580–590 (2017).

    CAS  Google Scholar 

  22. 22.

    Anariba, F., Viswanathan, U., Bocian, D. F. & McCreery, R. L. Determination of the structure and orientation of organic molecules tethered to flat graphitic carbon by ATR-FT-IR and Raman spectroscopy. Anal. Chem. 78, 3104–3112 (2006).

    CAS  Google Scholar 

  23. 23.

    Maghsoumi, A. et al. Edge chlorination of hexa-peri-hexabenzocoronene investigated by density functional theory and vibrational spectroscopy. Phys. Chem. Chem. Phys. 18, 11869–11878 (2016).

    CAS  Google Scholar 

  24. 24.

    Beloded, A. A., Koshechko, V. G., Pokhodenko, V. D., Nemoshkalenko, V. V. & Aleshin, V. G. X-ray photoelectron spectra of radical cations of the triphenylamine series and some heterocyclic compounds. Theor. Exp. Chem. 17, 99–103 (1981).

    Google Scholar 

  25. 25.

    Susi, T., Pichler, T. & Ayala, P. X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms. Beilstein J. Nanotechnol. 6, 177–192 (2015).

    Google Scholar 

  26. 26.

    Yuan, K. et al. 2D heterostructures derived from MoS2-templated, cobalt-containing conjugated microporous polymer sandwiches for the oxygen reduction reaction and electrochemical energy storage. ChemElectroChem 4, 709–715 (2017).

    CAS  Google Scholar 

  27. 27.

    Johra, F. T., Lee, J.-W. & Jung, W.-G. Facile and safe graphene preparation on solution based platform. J. Ind. Eng. Chem. 20, 2883–2887 (2014).

    CAS  Google Scholar 

  28. 28.

    Wu, Z.-S. et al. Bottom-up fabrication of sulfur-doped graphene films derived from sulfur-annulated nanographene for ultrahigh volumetric capacitance micro-supercapacitors. J. Am. Chem. Soc. 139, 4506–4512 (2017).

    CAS  Google Scholar 

  29. 29.

    Ma, Z. et al. Sulfur-doped graphene derived from cycled lithium–sulfur batteries as a metal-free electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 54, 1888–1892 (2015).

    CAS  Google Scholar 

  30. 30.

    Zuo, C. & Jagodzinski, P. W. Surface-enhanced Raman scattering of pyridine using different metals: differences and explanation based on the selective formation of α-pyridyl on metal surfaces. J. Phys. Chem. B 109, 1788–1793 (2005).

    CAS  Google Scholar 

  31. 31.

    Matsuoka, R. et al. Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface. J. Am. Chem. Soc. 139, 3145–3152 (2017).

    CAS  Google Scholar 

  32. 32.

    Maghsoumi, A., Brambilla, L., Castiglioni, C., Müllen, K. & Tommasini, M. Overtone and combination features of G and D peaks in resonance Raman spectroscopy of the C78H26 polycyclic aromatic hydrocarbon. J. Raman Spectrosc. 46, 757–764 (2015).

    CAS  Google Scholar 

  33. 33.

    Verzhbitskiy, I. A. et al. Raman fingerprints of atomically precise graphene nanoribbons. Nano Lett. 16, 3442–3447 (2016).

    CAS  Google Scholar 

  34. 34.

    Mao, J., Cao, X., Olk, D. C., Chu, W. & Schmidt-Rohr, K. Advanced solid-state NMR spectroscopy of natural organic matter. Prog. Nucl. Magn. Reson. Spectrosc. 100, 17–51 (2017).

    CAS  Google Scholar 

  35. 35.

    Wang, S., Tang, Y., Schobert, H. H., Guo, Yn & Su, Y. FTIR and 13C NMR investigation of coal component of Late Permian coals from Southern China. Energy Fuels 25, 5672–5677 (2011).

    CAS  Google Scholar 

  36. 36.

    Rollings, R. C., Kuan, A. T. & Golovchenko, J. A. Ion selectivity of graphene nanopores. Nat. Commun. 7, 11408 (2016).

    CAS  Google Scholar 

  37. 37.

    Wang, L. et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nat. Nanotechnol. 12, 509–522 (2017).

    CAS  Google Scholar 

  38. 38.

    Jain, T. et al. Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores. Nat. Nanotechnol. 10, 1053–1057 (2015).

    CAS  Google Scholar 

  39. 39.

    Feng, J. D. et al. Observation of ionic Coulomb blockade in nanopores. Nat. Mater. 15, 850–855 (2016).

    CAS  Google Scholar 

  40. 40.

    Esfandiar, A. et al. Size effect in ion transport through angstrom-scale slits. Science 358, 511–513 (2017).

    CAS  Google Scholar 

  41. 41.

    Gao, J. et al. High-performance ionic diode membrane for salinity gradient power generation. J. Am. Chem. Soc. 136, 12265–12272 (2014).

    CAS  Google Scholar 

  42. 42.

    Plett, T. S. et al. Solid-state ionic diodes demonstrated in conical nanopores. J. Phys. Chem. C 121, 6170–6176 (2017).

    CAS  Google Scholar 

  43. 43.

    Siwy, Z. S. & Howorka, S. Engineered voltage-responsive nanopores. Chem. Soc. Rev. 39, 1115–1132 (2010).

    CAS  Google Scholar 

  44. 44.

    Karnik, R., Duan, C. H., Castelino, K., Daiguji, H. & Majumdar, A. Rectification of ionic current in a nanofluidic diode. Nano Lett. 7, 547–551 (2007).

    CAS  Google Scholar 

  45. 45.

    Ouyang, W., Wang, W., Zhang, H. X., Wu, W. G. & Li, Z. H. Nanofluidic crystal: a facile, high-efficiency and high-power-density scaling up scheme for energy harvesting based on nanofluidic reverse electrodialysis. Nanotechnology 24, 345401 (2013).

    Google Scholar 

  46. 46.

    Weinstein, J. N. & Leitz, F. B. Electric power from differences in salinity: the dialytic battery. Science 191, 557–559 (1976).

    CAS  Google Scholar 

  47. 47.

    Cao, L. et al. On the origin of ion selectivity in ultrathin nanopores: insights for membrane-scale osmotic energy conversion. Adv. Funct. Mater. 28, 1804189 (2018).

    Google Scholar 

  48. 48.

    Jia, W. L. et al. 7-azaindolyl- and 2,2′-dipyridylamino-functionalized molecular stars with sixfold symmetry: self-assembly, luminescence, and coordination compounds. Chem. Eur. J. 11, 832–842 (2005).

    Google Scholar 

  49. 49.

    Thompson, C. M. et al. Substituent effects on the gas sorption and selectivity properties of hexaphenylbenzene and hexabenzocoronene based porous polymers. Macromolecules 47, 8645–8652 (2014).

    CAS  Google Scholar 

  50. 50.

    Pantelic, R. S. et al. Graphene: substrate preparation and introduction. J. Struct. Biol. 174, 234–238 (2011).

    CAS  Google Scholar 

  51. 51.

    Hartmann, S. R. & Hahn, E. L. Nuclear double resonance in the rotating frame. Phys. Rev. 128, 2042–2053 (1962).

    CAS  Google Scholar 

  52. 52.

    Metz, G., Wu, X. L. & Smith, S. O. Ramped-amplitude cross polarization in magic-angle-spinning NMR. J. Magn. Reson. Ser. A 110, 219–227 (1994).

    CAS  Google Scholar 

  53. 53.

    Fung, B. M., Khitrin, A. K. & Ermolaev, K. An improved broadband decoupling sequence for liquid crystals and solids. J. Magn. Reson. 142, 97–101 (2000).

    CAS  Google Scholar 

  54. 54.

    Martín-Yerga, D., Rama, E. C. & Costa-García, A. Electrochemical study and applications of selective electrodeposition of silver on quantum dots. Anal. Chem. 88, 3739–3746 (2016).

    Google Scholar 

  55. 55.

    Barlag, R. et al. A student-made silver–silver chloride reference electrode for the general chemistry laboratory: 10 min preparation. J. Chem. Educ. 91, 766–768 (2014).

    CAS  Google Scholar 

  56. 56.

    Baerends, E. J. et al. ADF2017, SCM, Theoretical Chemistry https://www.scm.com (Vrije Universiteit, Amsterdam, The Netherlands).

  57. 57.

    Berendsen, H. J. C., van der Spoel, D. & van Drunen, R. GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91, 43–56 (1995).

    CAS  Google Scholar 

  58. 58.

    Lindahl, E., Hess, B. & van der Spoel, D. GROMACS 3.0: a package for molecular simulation and trajectory analysis. J. Mol. Model. 7, 306–317 (2001).

    CAS  Google Scholar 

  59. 59.

    Van Der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005).

    Google Scholar 

  60. 60.

    Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008).

    CAS  Google Scholar 

  61. 61.

    Pronk, S. et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29, 845–854 (2013).

    CAS  Google Scholar 

  62. 62.

    Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).

    Google Scholar 

  63. 63.

    Páll, S., Abraham, M. J., Kutzner, C., Hess, B. & Lindahl, E. in Solving Software Challenges for Exascale (eds Markidis, S. & Laure, E.) 3–27 (Springer International Publishing, 2015).

  64. 64.

    Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    CAS  Google Scholar 

  65. 65.

    York, D. M., Darden, T. A. & Pedersen, L. G. The effect of long‐range electrostatic interactions in simulations of macromolecular crystals: a comparison of the Ewald and truncated list methods. J. Chem. Phys. 99, 8345–8348 (1993).

    CAS  Google Scholar 

  66. 66.

    Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

    Google Scholar 

  67. 67.

    Horn, H. W. et al. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J. Chem. Phys. 120, 9665–9678 (2004).

    CAS  Google Scholar 

  68. 68.

    Vega, C. & de Miguel, E. Surface tension of the most popular models of water by using the test-area simulation method. J. Chem. Phys. 126, 154707 (2007).

    CAS  Google Scholar 

  69. 69.

    Chen, F. & Smith, P. E. Simulated surface tensions of common water models. J. Chem. Phys. 126, 221101 (2007).

    Google Scholar 

  70. 70.

    Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    CAS  Google Scholar 

  71. 71.

    Kaminski, G. A., Friesner, R. A., Tirado-Rives, J. & Jorgensen, W. L. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105, 6474–6487 (2001).

    CAS  Google Scholar 

  72. 72.

    Martin, M. G. Comparison of the AMBER, CHARMM, COMPASS, GROMOS, OPLS, TraPPE and UFF force fields for prediction of vapor–liquid coexistence curves and liquid densities. Fluid Phase Equilib. 248, 50–55 (2006).

    CAS  Google Scholar 

  73. 73.

    Martínez, J. M. & Martínez, L. Packing optimization for automated generation of complex system’s initial configurations for molecular dynamics and docking. J. Comput. Chem. 24, 819–825 (2003).

    Google Scholar 

  74. 74.

    Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).

    Google Scholar 

  75. 75.

    Roe, D. R. & Cheatham, T. E. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9, 3084–3095 (2013).

    CAS  Google Scholar 

Download references


This work is supported by the Netherlands Organization for Scientific Research (Vidi 723.013.007), the European Research Council (ERC) Proof of Concept NANOPORE (no. 780004). We acknowledge Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) Exact and Natural Sciences for the use of the supercomputer facilities at SURFsara. H.Q. and U.K. gratefully acknowledge the financial support by the German Research Foundation (DFG) and the Ministry of Science, Research and the Arts (MWK) of Baden-Wuerttemberg in the framework of the “SALVE” (Sub-Angstrom Low-Voltage Electron Microscopy) project (DFG KA 1295/21-1). S. G. Lemay is acknowledged for the general discussion about nanofluidics. W. Fu and X. Zhang are acknowledged for the discussions about ionic conductance. J. van Gerwen and C. van Helvoirt are acknowledged for the XPS measurements.

Author information




G.F.S. supervised the project. X.L. performed the monomer synthesis and characterization. X.L. and M.H. performed the membrane synthesis, characterization and ionic conductance measurements. H.Q. and U.K. conducted HRTEM and HAADF-STEM measurements. D.C., G.J.A.S. and F.B. performed the MD simulations. K.B.S.S.G., D.C., G.J.A.S., F.B. and H.d.G. performed the solid-state NMR studies. All authors contributed to discussions. X.L. wrote the manuscript with help from all authors.

Corresponding author

Correspondence to Grégory F. Schneider.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Yongsheng Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 MD simulations analysis of HPAHBC molecules on water surface.

ac, Schematic visualization of starting conformations for the HPAHBC molecules at the beginning of the MD simulation, vertical (a), stacked (b), planar (c); carbon atoms are shown in grey and nitrogen atoms in blue balls (hydrogens are omitted). d, Illustration of the tilt angle Φ (red arc) between the plane of the HBC ring defined by three specific carbon atom on the edge (yellow balls) and the x–y plane; carbon atoms in grey, nitrogen atoms in blue (hydrogens are omitted). The cpptraj module of AmberTools are used for the calculation of the HBC plane. e, Distribution of tilt angle (Φ) per each molecule from MD simulations with the increasing amount of HPAHBC molecules, from 1 to 6, and different starting point conformation, vertical (red), stacked (blue), planar (green). With the red circle at 90° and the concentric blue-green circle at 0°, we underline the starting point for the tilt angle at the beginning of the pre-equilibration simulations, for vertical and stacked-planar conformation, respectively. f, Distribution of number of hydrogen bonds (H-bonds) per HPAHBC molecule from MD simulations with increasing amount of the HPAHBC molecules, from 1 to 6, and different starting point conformation, vertical (red), stacked (blue), planar (green). Gromacs Tool (gmx hbond) is used for the calculation of the number of hydrogen bonds determined based on cutoffs for the angle Hydrogen–OH–N 125º and the distance OH–N 3.5 Å. OH is regarded as the donor, N as the acceptor. The distribution curves were obtained via Gaussian broadening with default standard deviation. Source data

Extended Data Fig. 2 Solid-state NMR spectra of HPAHBC powder annealed at different temperatures.

As the temperature increases from 400 degrees to 550 degrees, the peaks marked with blue dots gradually vanish, which is attributed to decomposition of the dipyridylamino rim.

Supplementary information

Supplementary Information

Supplementary Figs. 1–26, Tables 1–5 and refs. 1–13.

Source data

Source Data Fig. 1

Numerical data.

Source Data Fig. 2

Numerical data.

Source Data Fig. 3

Numerical data.

Source Data Fig. 4

Numerical data.

Source Data Extended Data Fig. 1

Numerical data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, X., He, M., Calvani, D. et al. Power generation by reverse electrodialysis in a single-layer nanoporous membrane made from core–rim polycyclic aromatic hydrocarbons. Nat. Nanotechnol. 15, 307–312 (2020). https://doi.org/10.1038/s41565-020-0641-5

Download citation