Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A sensitive and specific nanosensor for monitoring extracellular potassium levels in the brain

Abstract

Extracellular potassium concentration affects the membrane potential of neurons, and, thus, neuronal activity. Indeed, alterations of potassium levels can be related to neurological disorders, such as epilepsy and Alzheimer’s disease, and, therefore, selectively detecting extracellular potassium would allow the monitoring of disease. However, currently available optical reporters are not capable of detecting small changes in potassium, in particular, in freely moving animals. Furthermore, they are susceptible to interference from sodium ions. Here, we report a highly sensitive and specific potassium nanosensor that can monitor potassium changes in the brain of freely moving mice undergoing epileptic seizures. An optical potassium indicator is embedded in mesoporous silica nanoparticles, which are shielded by an ultrathin layer of a potassium-permeable membrane, which prevents diffusion of other cations and allows the specific capturing of potassium ions. The shielded nanosensor enables the spatial mapping of potassium ion release in the hippocampus of freely moving mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Atom-level design and performance of the K+ nanosensors.
Fig. 2: Mechanistic studies on the high selectivity and sensitivity of the shielded nanosensors.
Fig. 3: Imaging of K+ release in cultured neurons.
Fig. 4: Imaging of K+ release in brain slices.
Fig. 5: Dynamic [K+]o fluctuations in the brain of freely moving mice.
Fig. 6: Multipoint [K+]o measurements in freely moving mice.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Alivisatos, A. P. et al. The brain activity map. Science 339, 1284–1285 (2013).

    CAS  Google Scholar 

  2. Chung, K. et al. Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013).

    CAS  Google Scholar 

  3. Chung, K. & Deisseroth, K. Clarity for mapping the nervous system. Nat. Methods 10, 508–513 (2013).

    CAS  Google Scholar 

  4. Robinson, J. T. et al. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 7, 180–184 (2012).

    CAS  Google Scholar 

  5. Abbott, J. et al. CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging. Nat. Nanotechnol. 12, 460–466 (2017).

    CAS  Google Scholar 

  6. Yellen, G. The voltage-gated potassium channels and their relatives. Nature 419, 35–42 (2002).

    CAS  Google Scholar 

  7. Ding, F. et al. Changes in the composition of brain interstitial ions control the sleep-wake cycle. Science 352, 550–555 (2016).

    CAS  Google Scholar 

  8. Rasmussen, R. et al. Cortex-wide changes in extracellular potassium ions parallel brain state transitions in awake behaving mice. Cell Rep. 28, 1182–1194 (2019).

    CAS  Google Scholar 

  9. Kofuji, P. & Newman, E. A. Potassium buffering in the central nervous system. Neuroscience 129, 1045–1056 (2004).

    CAS  Google Scholar 

  10. Bekar, LaneK. & Nedergaard, M. Is potassium a ubiquitous mediator of vasodilation in the central nervous system? Biophys. J. 105, 2238–2239 (2013).

    CAS  Google Scholar 

  11. Ammann, D. Ion-Selective Microelectrodes, Principles, Design and Application (Springer, 1987).

  12. Antonio, L. L. et al. In vitro seizure like events and changes in ionic concentration. J. Neurosci. Meth. 260, 33–44 (2016).

    CAS  Google Scholar 

  13. Kann, O. et al. Metabolic dysfunction during neuronal activation in the ex vivo hippocampus from chronic epileptic rats and humans. Brain 128, 2396–2407 (2005).

    Google Scholar 

  14. Heinemann, U. & Dietzel, I. Extracellular potassium concentration in chronic alumina cream foci of cats. J. Neurophysiol. 52, 421–434 (1984).

    CAS  Google Scholar 

  15. Hablitz, J. J. & Heinemann, U. Extracellular K+ and Ca2+ changes during epileptiform discharges in the immature rat neocortex. Dev. Brain Res. 36, 299–303 (1987).

    CAS  Google Scholar 

  16. Yin, J., Hu, Y. & Yoon, J. Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH. Chem. Soc. Rev. 44, 4619–4644 (2015).

    CAS  Google Scholar 

  17. Kim, E. H., Chin, G., Rong, G., Poskanzer, K. E. & Clark, H. A. Optical probes for neurobiological sensing and imaging. Acc. Chem. Res. 51, 1023–1032 (2018).

    CAS  Google Scholar 

  18. Kong, X. et al. A highly selective mitochondria-targeting fluorescent K+ sensor. Angew. Chem. Int. Ed. 54, 12053–12057 (2015).

    CAS  Google Scholar 

  19. Wellbourne-Wood, J., Rimmele, T. S. & Chatton, J.-Y. Imaging extracellular potassium dynamics in brain tissue using a potassium-sensitive nanosensor. Neurophotonics 4, 015002 (2017).

    Google Scholar 

  20. Bischof, H. et al. Novel genetically encoded fluorescent probes enable real-time detection of potassium in vitro and in vivo. Nat. Commun. 8, 1422 (2017).

    Google Scholar 

  21. Padmawar, P., Yao, X., Bloch, O., Manley, G. T. & Verkman, A. S. K+ waves in brain cortex visualized using a long-wavelength K+-sensing fluorescent indicator. Nat. Methods 2, 825–827 (2005).

    CAS  Google Scholar 

  22. He, H., Mortellaro, M. A., Leiner, M. J. P., Fraatz, R. J. & Tusa, J. K. A fluorescent sensor with high selectivity and sensitivity for potassium in water. J. Am. Chem. Soc. 125, 1468–1469 (2003).

    CAS  Google Scholar 

  23. Zhou, X. et al. A new highly selective fluorescent K+ sensor. J. Am. Chem. Soc. 133, 18530–18533 (2011).

    CAS  Google Scholar 

  24. Rimmele, T. S. & Chatton, J.-Y. A novel optical intracellular imaging approach for potassium dynamics in astrocytes. PLoS ONE 9, e109243 (2014).

    Google Scholar 

  25. Burns, A., Ow, H. & Wiesner, U. Fluorescent core-shell silica nanoparticles: towards “lab on a particle” architectures for nanobiotechnology. Chem. Soc. Rev. 35, 1028–1042 (2006).

    CAS  Google Scholar 

  26. Ma, K., Sai, H. & Wiesner, U. Ultrasmall sub-10 nm near-infrared fluorescent mesoporous silica nanoparticles. J. Am. Chem. Soc. 134, 13180–13183 (2012).

    CAS  Google Scholar 

  27. Burns, A. A. et al. Fluorescent silica nanoparticles with efficient urinary excretion for nanomedicine. Nano Lett. 9, 442–448 (2009).

    CAS  Google Scholar 

  28. Wu, W. et al. Enhanced separation of potassium ions by spontaneous K+-induced self-assembly of a novel metal-organic framework and excess specific cation-π interactions. Angew. Chem. Int. Ed. 53, 10649–10653 (2014).

    CAS  Google Scholar 

  29. Pauling, L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals 3rd edn (Cornell Univ. Press, 1960).

  30. Liu, X. et al. Biomimetic DNA nanotubes: nanoscale channel design and applications. Angew. Chem. Int. Ed. 58, 8996–9011 (2019).

    CAS  Google Scholar 

  31. Meyer, D., Hagemann, A. & Kruss, S. Kinetic requirements for spatiotemporal chemical imaging with fluorescent nanosensors. ACS Nano 11, 4017–4027 (2017).

    CAS  Google Scholar 

  32. Volkov, A. G., Paula, S. & Deamer, D. W. Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers. Bioelectrochem. Bioenerg. 42, 153–160 (1997).

    CAS  Google Scholar 

  33. Mancinelli, R., Botti, A., Bruni, F., Ricci, M. A. & Soper, A. K. Hydration of sodium, potassium, and chloride ions in solution and the concept of structure maker/breaker. J. Phys. Chem. B 111, 13570–13577 (2007).

    CAS  Google Scholar 

  34. Soper, A. K. & Weckström, K. Ion solvation and water structure in potassium halide aqueous solutions. Biophys. Chem. 124, 180–191 (2006).

    CAS  Google Scholar 

  35. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    CAS  Google Scholar 

  36. Noskov, S. Y., Bernèche, S. & Roux, B. Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature 431, 830–834 (2004).

    CAS  Google Scholar 

  37. Donnas, F. G. The Donnan membrane equilibrium. Nature 157, 495–496 (1946).

    Google Scholar 

  38. Gao, J. et al. High-performance ionic diode membrane for salinity gradient power generation. J. Am. Chem. Soc. 136, 12265–12272 (2014).

    CAS  Google Scholar 

  39. Pu, Q., Yun, J., Temkin, H. & Liu, S. Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Lett. 4, 1099–1103 (2004).

    CAS  Google Scholar 

  40. Wang, Y. et al. A kindling model of pharmacoresistant temporal lobe epilepsy in Sprague–Dawley rats induced by Coriaria lactone and its possible mechanism. Epilepsia 44, 475–488 (2003).

    Google Scholar 

  41. Yu, M., Zhou, C., Liu, J., Hankins, J. D. & Zheng, J. Luminescent gold nanoparticles with pH-dependent membrane adsorption. J. Am. Chem. Soc. 133, 11014–11017 (2011).

    CAS  Google Scholar 

  42. Chen, G. et al. Glutathione-capped quantum dots for plasma membrane labeling and membrane potential imaging. Nano Res. 12, 1321–1326 (2019).

    CAS  Google Scholar 

  43. Sperk, G. Kainic acid seizures in the rat. Prog. Neurobiol. 42, 1–32 (1994).

    CAS  Google Scholar 

  44. Lai, H. C. & Jan, L. Y. The distribution and targeting of neuronal voltage-gated ion channels. Nat. Rev. Neurosci. 7, 548–562 (2006).

    CAS  Google Scholar 

  45. Wang, Y. et al. Depolarized gabaergic signaling in subicular microcircuits mediates generalized seizure in temporal lobe epilepsy. Neuron 95, 92–105 (2017).

    CAS  Google Scholar 

  46. Bertram, E. H. Neuronal circuits in epilepsy: do they matter? Exp. Neurol. 244, 67–74 (2013).

    Google Scholar 

  47. Duncan, J. S. Imaging in the surgical treatment of epilepsy. Nat. Rev. Neurol. 6, 537–550 (2010).

    Google Scholar 

  48. Rogawski, M. A. & Löscher, W. The neurobiology of antiepileptic drugs. Nat. Rev. Neurosci. 5, 553–564 (2004).

    CAS  Google Scholar 

  49. Rogawski, M. A. & Löscher, W. The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions. Nat. Med. 10, 685–692 (2004).

    CAS  Google Scholar 

  50. Meberg, P. J. & Miller, M. W. Culturing hippocampal and cortical neurons. Methods Cell Biol. 71, 111–127 (2003).

    Google Scholar 

  51. Pan, L. et al. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J. Am. Chem. Soc. 134, 5722–5725 (2012).

    CAS  Google Scholar 

  52. Frisch, M. J. et al. Gaussian 03, Revision C.02 (Gaussian, Inc., 2004).

  53. Wang, J., Wang, W., Kollman, P. A. & Case, D. A. Antechamber: an accessory software package for molecular mechanical calculations. J. Am. Chem. Soc. 222, U403 (2001).

    Google Scholar 

  54. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. Model. 14, 33–38 (1996).

    CAS  Google Scholar 

  55. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    CAS  Google Scholar 

  56. Hirschfelder, J. O., Cur- tiss, C. F. & Bird, R. B. Molecular Theory of Gases and Liquids 2nd edn (John Wiley & Sons, 1954).

  57. Taylor, A. M. et al. A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat. Methods 2, 599–605 (2005).

    CAS  Google Scholar 

  58. Xiong, Z.-Q. & Stringer, J. L. Sodium pump activity, not glial spatial buffering, clears potassium after epileptiform activity induced in the dentate gyrus. J. Neurophysiol. 83, 1443–1451 (2000).

    CAS  Google Scholar 

  59. Racine, R. J. Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroen. Clin. Neuro. 32, 281–294 (1972).

    CAS  Google Scholar 

  60. Sato, M., Racine, R. J. & McIntyre, D. C. Kindling: basic mechanisms and clinical validity. Electroen. Clin. Neuro. 76, 459–472 (1990).

    CAS  Google Scholar 

Download references

Acknowledgements

The work done in the Korean institutions was mainly supported by the Institute for Basic Science of Korea (grant no. IBS-R006-D1). The work done in the Chinese institutions was mainly supported by the following funding programmes: the National Key Research and Development Programme of China (grant no. 2016YFA0203600), the National Natural Science Foundation of China (grant nos. 31822019, 51503180, 51611540345, 51703195, 81630098 and 91859116) and the One Belt and One Road International Cooperation Project from the Key Research and Development Programme of Zhejiang Province (grant no. 2019C04024). The work was also partly supported by the National Institute of Neurological Disorders and Stroke Research Project Grant (grant no. NS083402); the BioNano Health-Guard Research Center funded by the Ministry of Science and ICT of Korea as Global Frontier Project (grant no. H-GUARD_2013M3A6B2078947); the Basic Science Research Programme through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (grant no. NRF-2019R1F1A1060107); the Zhejiang Province Natural Science Foundation of China (grant no. LGF19C100002); and the Fundamental Research Funds for the Central Universities (grant nos. 2018QNA7020 and 2019QNA5001).

Author information

Authors and Affiliations

Authors

Contributions

J.L. and D.L. conceived and designed the experiments. J.L. and L.P. fabricated K+ nanosensors. F.L., L.P., P.L., H.L., G.K., Y.D., K.S., D.K. and J.N. contributed to the nanosensor characterization and data analyses. H.T. carried out high-resolution TEM characterizations. B.Z. and Q.W. performed computer simulations. Y.W., Y.Z., Y.X., F.F., C.X. and S.J. performed in vitro and in vivo experiments and analyses. W.G. provided beneficial discussions to the sensing mechanism. All authors discussed the results and commented on the manuscript. J.L., F.L., Y.W., L.P., D.K., H.J.C., W.G., Z.C., T.H. and D.L. co-wrote the paper.

Corresponding authors

Correspondence to Zhong Chen, Taeghwan Hyeon or Daishun Ling.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Christophe Bernard and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25

Reporting Summary

Supplementary Video 1

Results of molecular dynamics simulations showing the penetration of K+ through the filter membrane. Experiments were repeated five times independently.

Supplementary Video 2

Results of molecular dynamics simulations showing the exclusion of Na+ by the filter membrane. Experiments were repeated five times independently.

Supplementary Video 3

Behaviors of the freely moving normal mouse without epilepsy.

Supplementary Video 4

Behaviors of the epileptic mouse with seizure stage 1.

Supplementary Video 5

Behaviors of the epileptic mouse with seizure stage 2.

Supplementary Video 6

Behaviors of the epileptic mouse with seizure stage 3.

Supplementary Video 7

Behaviors of the epileptic mouse with seizure stage 4.

Supplementary Video 8

Behaviors of the epileptic mouse with seizure stage 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Li, F., Wang, Y. et al. A sensitive and specific nanosensor for monitoring extracellular potassium levels in the brain. Nat. Nanotechnol. 15, 321–330 (2020). https://doi.org/10.1038/s41565-020-0634-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-020-0634-4

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research