Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Graphene-assisted spontaneous relaxation towards dislocation-free heteroepitaxy

Abstract

Although conventional homoepitaxy forms high-quality epitaxial layers1,2,3,4,5, the limited set of material systems for commercially available wafers restricts the range of materials that can be grown homoepitaxially. At the same time, conventional heteroepitaxy of lattice-mismatched systems produces dislocations above a critical strain energy to release the accumulated strain energy as the film thickness increases. The formation of dislocations, which severely degrade electronic/photonic device performances6,7,8, is fundamentally unavoidable in highly lattice-mismatched epitaxy9,10,11. Here, we introduce a unique mechanism of relaxing misfit strain in heteroepitaxial films that can enable effective lattice engineering. We have observed that heteroepitaxy on graphene-coated substrates allows for spontaneous relaxation of misfit strain owing to the slippery graphene surface while achieving single-crystalline films by reading the atomic potential from the substrate. This spontaneous relaxation technique could transform the monolithic integration of largely lattice-mismatched systems by covering a wide range of the misfit spectrum to enhance and broaden the functionality of semiconductor devices for advanced electronics and photonics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Strain analysis by Raman spectra and schematic images.
Fig. 2: Cross-sectional ADF-STEM images of InGaP grown on bare GaAs and graphene/GaAs.
Fig. 3: Theoretical calculation to understand spontaneous relaxation.
Fig. 4: Highly mismatched system of GaP on GaAs.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Chen, C. Q. et al. GaN homoepitaxy on freestanding (1100) oriented GaN substrates. Appl. Phys. Lett. 81, 3194–3196 (2002).

    CAS  Article  Google Scholar 

  2. 2.

    Kwon, O. et al. Monolithic integration of AlGaInP laser diodes on SiGe/Si substrates by molecular beam epitaxy. J. Appl. Phys. 100, 13103 (2006).

    Article  Google Scholar 

  3. 3.

    Matsunami, H. & Kimoto, T. Step-controlled epitaxial growth of SiC: high quality homoepitaxy. Mater. Sci. Eng. R. Rep. 20, 125–166 (1997).

    Article  Google Scholar 

  4. 4.

    Vaisman, M. et al. Effects of growth temperature and device structure on GaP solar cells grown by molecular beam epitaxy. Appl. Phys. Lett. 106, 063903 (2015).

    Article  Google Scholar 

  5. 5.

    Voigtländer, B., Weber, T., Šmilauer, P. & Wolf, D. E. Transition from island growth to step-flow growth for Si/Si (100) epitaxy. Phys. Rev. Lett. 78, 2164–2167 (1997).

    Article  Google Scholar 

  6. 6.

    Luan, H.-C. et al. High-quality Ge epilayers on Si with low threading-dislocation densities. Appl. Phys. Lett. 75, 2909–2911 (1999).

    CAS  Article  Google Scholar 

  7. 7.

    Currie, M. T., Samavedam, S. B., Langdo, T. A., Leitz, C. W. & Fitzgerald, E. A. Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing. Appl. Phys. Lett. 72, 1718–1720 (1998).

    CAS  Article  Google Scholar 

  8. 8.

    Andre, C. L. et al. Impact of dislocation densities on n+∕ p and p+∕ n junction GaAs diodes and solar cells on SiGe virtual substrates. J. Appl. Phys. 98, 14502 (2005).

    Article  Google Scholar 

  9. 9.

    Lee, M. L., Antoniadis, D. A. & Fitzgerald, E. A. Challenges in epitaxial growth of SiGe buffers on Si (111), (110), and (112). Thin Solid Films 508, 136–139 (2006).

    CAS  Article  Google Scholar 

  10. 10.

    Chen, R. et al. Nanolasers grown on silicon. Nat. Photonics 5, 170–175 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    Ebert, C. B., Eyres, L. A., Fejer, M. M. & Harris, J. S. Jr MBE growth of antiphase GaAs films using GaAs/Ge/GaAs heteroepitaxy. J. Cryst. Growth 201-202, 187–193 (1999).

    Article  Google Scholar 

  12. 12.

    Lee, M. L., Fitzgerald, E. A., Bulsara, M. T., Currie, M. T. & Lochtefeld, A. Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 97, 1 (2005).

    Article  Google Scholar 

  13. 13.

    Bean, J. C., Sheng, T. T., Feldman, L. C., Fiory, A. T. & Lynch, R. T. Pseudomorphic growth of GexSi1−x on silicon by molecular beam epitaxy. Appl. Phys. Lett. 44, 102–104 (1984).

    CAS  Article  Google Scholar 

  14. 14.

    Fitzgerald, E. A. et al. Totally relaxed GexSi1−x layers with low threading dislocation densities grown on Si substrates. Appl. Phys. Lett. 59, 811–813 (1991).

    CAS  Article  Google Scholar 

  15. 15.

    Song, T. L., Chua, S. J., Fitzgerald, E. A., Chen, P. & Tripathy, S. Strain relaxation in graded InGaN/GaN epilayers grown on sapphire. Appl. Phys. Lett. 83, 1545–1547 (2003).

    CAS  Article  Google Scholar 

  16. 16.

    Massies, J. & Grandjean, N. Oscillation of the lattice relaxation in layer-by-layer epitaxial growth of highly strained materials. Phys. Rev. Lett. 71, 1411–1414 (1993).

    CAS  Article  Google Scholar 

  17. 17.

    Daruka, I. & Barabási, A.-L. Dislocation-free island formation in heteroepitaxial growth: a study at equilibrium. Phys. Rev. Lett. 79, 3708–3711 (1997).

    CAS  Article  Google Scholar 

  18. 18.

    Kim, Y. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 544, 340–343 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    Kong, W. et al. Polarity governs atomic interaction through two-dimensional materials. Nat. Mater. 17, 999–1004 (2018).

    CAS  Article  Google Scholar 

  20. 20.

    Li, X. et al. Large-area two-dimensional layered hexagonal boron nitride grown on sapphire by metalorganic vapor phase epitaxy. Cryst. Growth Des. 16, 3409–3415 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Attolini, G. et al. Optical and structural characterization of LP MOVPE grown lattice matched InGaP/GaAs heterostructures. Mater. Sci. Eng. B 91-92, 123–127 (2002).

    Article  Google Scholar 

  22. 22.

    Kato, T., Matsumoto, T. & Ishida, T. Raman spectral behavior of In1-xGaxP (0 < x < 1). Jpn. J. Appl. Phys. 27, 983–986 (1988).

    CAS  Article  Google Scholar 

  23. 23.

    Lee, H. et al. Study of strain and disorder of InxGa1−xP/(GaAs, graded GaP)(0.25 ≤ x ≤ 0.8) using spectroscopic ellipsometry and Raman spectroscopy. J. Appl. Phys. 75, 5040–5051 (1994).

    CAS  Article  Google Scholar 

  24. 24.

    King-Ning, T., Mayer, J. W. & Feldman, L. C. Electronic Thin Film Science for Electrical Engineers and Materials Scientists (Macmillan, 1996).

  25. 25.

    Matthews, J. W. & Blakeslee, A. E. Defects in epitaxial multilayers: I. Misfit dislocations. J. Cryst. Growth 27, 118–125 (1974).

    CAS  Google Scholar 

  26. 26.

    Freundlich, A., Bensaoula, A., Bensaoula, A. H. & Rossignol, V. Interface and relaxation properties of chemical beam epitaxy grown GaP/GaAs structures. J. Vac. Sci. Technol. B 11, 843–846 (1993).

    CAS  Article  Google Scholar 

  27. 27.

    Morales, F. M. et al. Microstructural improvements of InP on GaAs (001) grown by molecular beam epitaxy by in situ hydrogenation and postgrowth annealing. Appl. Phys. Lett. 94, 41919 (2009).

    Article  Google Scholar 

  28. 28.

    Bae, S.-H. et al. Unveiling the carrier transport mechanism in epitaxial graphene for forming wafer-scale, single-domain graphene. Proc. Natl Acad. Sci. USA 114, 4082–4086 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    Shim, J. et al. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science 362, 665–670 (2018).

    CAS  Article  Google Scholar 

  30. 30.

    Kim, J. et al. Layer-resolved graphene transfer via engineered strain layers. Science 342, 833–836 (2013).

    CAS  Article  Google Scholar 

  31. 31.

    Bae, S.-H. et al. Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nat. Mater. 18, 550–560 (2019).

    CAS  Article  Google Scholar 

  32. 32.

    Kum, H. et al. Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices. Nat. Electron. 2, 439–450 (2019).

    CAS  Article  Google Scholar 

  33. 33.

    Han, Y. et al. Sub-nanometre channels embedded in two-dimensional materials. Nat. Mater. 17, 129–133 (2018).

    CAS  Article  Google Scholar 

  34. 34.

    Hÿtch, M. J., Snoeck, E. & Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Defense Advanced Research Projects Agency Young Faculty Award (award no. 029584-00001), the Department of Energy Solar Energy Technologies Office (award no. DE-EE0008558), the Air Force Research Laboratory (award no. FA9453-18-2-0017), ROHM Co., and LG electronics. Y.H. and D.M. were supported by the National Science Foundation Division of Material Research (award no. 1719875). We are grateful for general support from J.S. Lee (Head of the Materials and Devices Advanced Research Institute, LG Electronics).

Author information

Affiliations

Authors

Contributions

J.K., S.-H.B., K. Lu, Y.H., S.K. and K. Lee conceived the experiment. S.-H.B., K. Lu and H.K. contributed to the epitaxial growth. S.-H.B., K. Lu, B.-S.K., C.K. and J.S. worked on the graphene transfer. Y.H. and S.K. performed the TEM. S.-H.B., K. Lu, Y.H., S.K., D.A.M., K. Lee and J.K. analysed the TEM data. K.Q., W.K. and Y.B. analysed the Raman spectra. C.C. and Y.N. designed and performed the DFT calculation. B.-S.K. and J.L. contributed to the modelling data summary and figure configuration. K. Lu, H.S.K. and P.C. performed XRD. K. Lu and H.K. carried out the EBSD measurement. S.-H.B., K.Q., J.P., M.J. and J.K. contributed to the strain relaxation analysis. All the authors contributed to the discussion and analysis of the results regarding the manuscript. J.K. directed the team.

Corresponding authors

Correspondence to Kyusang Lee or Jeehwan Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, discussion.

Source data

Source Data Fig. 1

Raman data, % relaxation data.

Source Data Fig. 2

Lattice constant of InGaP on bare GaAs substrates along the x-axis and lattice constant of InGaP on graphene-coated GaAs substrates along the y-axis.

Source Data Fig. 3

Energy barrier required for the interface sliding of epilayers on graphene/substrates and bare substrates, threshold energy for each situation and critical thickness of the heteroepitaxy film.

Source Data Fig. 4

HRXRD azimuthal off-axis φ scan of the GaP epilayer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bae, SH., Lu, K., Han, Y. et al. Graphene-assisted spontaneous relaxation towards dislocation-free heteroepitaxy. Nat. Nanotechnol. 15, 272–276 (2020). https://doi.org/10.1038/s41565-020-0633-5

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research