Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Identification of LiH and nanocrystalline LiF in the solid–electrolyte interphase of lithium metal anodes



A comprehensive understanding of the solid–electrolyte interphase (SEI) composition is crucial to developing high-energy batteries based on lithium metal anodes. A particularly contentious issue concerns the presence of LiH in the SEI. Here we report on the use of synchrotron-based X-ray diffraction and pair distribution function analysis to identify and differentiate two elusive components, LiH and LiF, in the SEI of lithium metal anodes. LiH is identified as a component of the SEI in high abundance, and the possibility of its misidentification as LiF in the literature is discussed. LiF in the SEI is found to have different structural features from LiF in the bulk phase, including a larger lattice parameter and a smaller grain size (<3 nm). These characteristics favour Li+ transport and explain why an ionic insulator, like LiF, has been found to be a favoured component for the SEI. Finally, pair distribution function analysis reveals key amorphous components in the SEI.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Characterization of the interphase by XRD.
Fig. 2: Air-exposure experiment of the interphase sample.
Fig. 3: Analysis of amorphous components and relative quantification of crystalline components in the interphase.

Data availability

All relevant data in the article are available from the corresponding author upon reasonable request.


  1. 1.

    Whittingham, M. S. Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 114, 11414–11443 (2014).

    CAS  Article  Google Scholar 

  2. 2.

    Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

    CAS  Article  Google Scholar 

  3. 3.

    Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Aurbach, D. & Weissman, I. On the possibility of LiH formation on Li surfaces in wet electrolyte solutions. Electrochem. Commun. 1, 324–331 (1999).

    CAS  Article  Google Scholar 

  5. 5.

    Xiao, J. How lithium dendrites form in liquid batteries. Science 366, 426–427 (2019).

    CAS  Article  Google Scholar 

  6. 6.

    Liu, B., Zhang, J.-G. & Xu, W. Advancing lithium metal batteries. Joule 2, 833–845 (2018).

    CAS  Article  Google Scholar 

  7. 7.

    Zachman, M. J., Tu, Z., Choudhury, S., Archer, L. A. & Kourkoutis, L. F. Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries. Nature 560, 345–349 (2018).

    CAS  Article  Google Scholar 

  8. 8.

    Fang, C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515 (2019).

    CAS  Article  Google Scholar 

  9. 9.

    Cheng, X.-B. et al. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 3, 1500213 (2016).

    Article  Google Scholar 

  10. 10.

    Borodin, O. et al. Uncharted waters: super-concentrated electrolytes. Joule 4, 69–100 (2020).

    CAS  Article  Google Scholar 

  11. 11.

    Wang, X. et al. New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM. Nano Lett. 17, 7606–7612 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    Li, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Wang, X. et al. Cryogenic electron microscopy for characterizing and diagnosing batteries. Joule 2, 2225–2234 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    Wood, K. N. et al. Operando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytes. Nat. Commun. 9, 2490 (2018).

    Article  Google Scholar 

  15. 15.

    Nandasiri, M. I. et al. In situ chemical imaging of solid-electrolyte interphase layer evolution in Li−S batteries. Chem. Mater. 29, 4728–4737 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Wan, C. et al. Multinuclear NMR study of the solid electrolyte interface formed in lithium metal batteries. ACS Appl. Mater. Interfaces 9, 14741–14748 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    Wang, L. et al. Identifying the components of the solid–electrolyte interphase in Li-ion batteries. Nat. Chem. 11, 789–796 (2019).

    CAS  Article  Google Scholar 

  18. 18.

    Ota, H., Sakata, Y., Wang, X., Sasahara, J. & Yasukawa, E. Characterization of lithium electrode in lithium imides/ethylene carbonate and cyclic ether electrolytes: II. surface chemistry. J. Electrochem. Soc. 151, A437–A446 (2004).

    CAS  Article  Google Scholar 

  19. 19.

    Shen, C. et al. Direct observation of the growth of lithium dendrites on graphite anodes by operando EC-AFM. Small Methods 2, 1700298 (2018).

    Article  Google Scholar 

  20. 20.

    Liu, T. et al. In situ quantification of interphasial chemistry in Li-ion battery. Nat. Nanotechnol. 14, 50–56 (2019).

    CAS  Article  Google Scholar 

  21. 21.

    Sun, Y. & Ren, Y. In situ synchrotron X-ray techniques for real-time probing of colloidal nanoparticle synthesis. Part. Part. Syst. Charact. 30, 399–419 (2013).

    CAS  Article  Google Scholar 

  22. 22.

    David, W. I. F. et al. A mechanism for non-stoichiometry in the lithium amide/lithium imide hydrogen storage reaction. J. Am. Chem. Soc. 129, 1594–1601 (2007).

    CAS  Article  Google Scholar 

  23. 23.

    Zimmerman, W. B. Lattice-constant dependence on isotopic composition in the 7Li (H, D) system. Phys. Rev. B 5, 4704–4707 (1972).

    Article  Google Scholar 

  24. 24.

    Tyutyunnik, O. I. et al. Lithium hydride single crystal growth by bridgman-stockbarger method using ultrasound. J. Cryst. Growth 68, 741–746 (1984).

    CAS  Article  Google Scholar 

  25. 25.

    Srivastava, K.-K. & Merchant, H. D. Thermal expansion of alkali halides above 300°K. J. Phys. Chem. Solids 34, 2069–2073 (1973).

    CAS  Article  Google Scholar 

  26. 26.

    Ben Yahia, H. et al. Synthesis and characterization of the crystal structure, the magnetic and the electrochemical properties of the new fluorophosphate LiNaFe[PO4]F. Dalton Trans. 41, 11692–11699 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    Dong, H. et al. Compression of lithium fluoride to 92 GPa. High Press. Res. 34, 39–48 (2014).

    Article  Google Scholar 

  28. 28.

    Fukuhara, M. Lattice expansion of nanoscale compound particles. Phys. Lett. A 313, 427–430 (2003).

    CAS  Article  Google Scholar 

  29. 29.

    Ahmad, M. I. & Bhattacharya, S. S. Size effect on the lattice parameters of nanocrystalline anatase. Appl. Phys. Lett. 95, 191906 (2009).

    Article  Google Scholar 

  30. 30.

    Tsunekawa, S., Ishikawa, K., Li, Z. Q., Kawazoe, Y. & Kasuya, A. Origin of anomalous lattice expansion in oxide nanoparticles. Phys. Rev. Lett. 85, 3440–3443 (2000).

    CAS  Article  Google Scholar 

  31. 31.

    Szczȩśniak, M. M. & Ratajczak, H. Ab initio calculations on the lithium fluoride–ethylene complex. J. Chem. Phys. 67, 5400–5401 (1977).

    Article  Google Scholar 

  32. 32.

    Hahn, H. & Strick, G. Zur Mischkristallbildung zwischen Lithiumfluorid und Lithiumhydrid. Z. Anorg. Allg. Chem. 372, 248–251 (1970).

    CAS  Article  Google Scholar 

  33. 33.

    Varotsos, P. A. & Mourikis, S. Difference in conductivity between LiD and LiH crystals. Phys. Rev. B 10, 5220–5224 (1974).

    CAS  Article  Google Scholar 

  34. 34.

    Niu, C. et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 4, 551–559 (2019).

    CAS  Article  Google Scholar 

  35. 35.

    Neuhaus, J., von Harbou, E. & Hasse, H. Physico-chemical properties of solutions of lithium bis(fluorosulfonyl)imide (LiFSI) in dimethyl carbonate, ethylene carbonate, and propylene carbonate. J. Power Sources 394, 148–159 (2018).

    CAS  Article  Google Scholar 

  36. 36.

    Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N. & Hausermann, D. Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Press. Res. 14, 235–248 (2006).

    Article  Google Scholar 

  37. 37.

    Qiu, X., Thompson, J. W. & Billinge, S. J. L. PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data. J. Appl. Crystallogr. 37, 678 (2004).

    CAS  Article  Google Scholar 

  38. 38.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  39. 39.

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Article  Google Scholar 

  40. 40.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Article  Google Scholar 

Download references


The work done at Brookhaven National Laboratory was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Vehicle Technology Office of the US Department of Energy (DOE) through the Advanced Battery Materials Research (BMR) Program, including Battery500 Consortium under contract no. DE-SC0012704. The work done at Pacific Northwest National Laboratory was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US DOE through the Advanced Battery Materials Research (BMR) Program (Battery500 Consortium) under contract no. DE-AC02-05CH11231. The work at the Army Research Laboratory was performed under JCESR, an Energy Research Hub funded by Basic Energy Sciences, US DOE. This research used beamline 28-ID-2 of the National Synchrotron Light Source II, a US DOE Office of Science user facility operated for the DOE Office of Science by Brookhaven National Laboratory under contract no. DE-SC0012704.

Author information




J.X., E.H. and X.-Q.Y. proposed the research. J.X., J.L. and X.-Q.Y. organized and guided scientific discussions. H.L. and X.C. performed electrochemical characterization and SEI sample preparation. Z.S., X.W., O.B., S.G., C.W., X.F., S.-M.B., R.L. and E. H. performed XRD and PDF measurements and carried out the analysis. Z.S., J.X., E.H., K.X. and X.-Q.Y. prepared the manuscript with critical input from all other authors.

Corresponding authors

Correspondence to Jie Xiao, Xiao-Qing Yang or Enyuan Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Marcella Bini, Donal Finegan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5, Tables 1–14, note and refs. 1 and 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shadike, Z., Lee, H., Borodin, O. et al. Identification of LiH and nanocrystalline LiF in the solid–electrolyte interphase of lithium metal anodes. Nat. Nanotechnol. 16, 549–554 (2021).

Download citation


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research