Abstract
Quantum computers promise to execute complex tasks exponentially faster than any possible classical computer, and thus spur breakthroughs in quantum chemistry, material science and machine learning. However, quantum computers require fast and selective control of large numbers of individual qubits while maintaining coherence. Qubits based on hole spins in one-dimensional germanium/silicon nanostructures are predicted to experience an exceptionally strong yet electrically tunable spin–orbit interaction, which allows us to optimize qubit performance by switching between distinct modes of ultrafast manipulation, long coherence and individual addressability. Here we used millivolt gate voltage changes to tune the Rabi frequency of a hole spin qubit in a germanium/silicon nanowire from 31 to 219 MHz, its driven coherence time between 7 and 59 ns, and its Landé g-factor from 0.83 to 1.27. We thus demonstrated spin–orbit switch functionality, with on/off ratios of roughly seven, which could be further increased through improved gate design. Finally, we used this control to optimize our qubit further and approach the strong driving regime, with spin-flipping times as short as ~1 ns.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
A single hole spin with enhanced coherence in natural silicon
Nature Nanotechnology Open Access 22 September 2022
-
Ultrafast coherent control of a hole spin qubit in a germanium quantum dot
Nature Communications Open Access 11 January 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




Data availability
The data supporting the plots of this paper are available at the Zenodo repository at https://doi.org/10.5281/zenodo.4290131.
Change history
05 July 2021
A Correction to this paper has been published: https://doi.org/10.1038/s41565-021-00930-3
References
Zwanenburg, F. A. et al. Silicon quantum electronics. Rev. Mod. Phys. 85, 961–1019 (2013).
Kloeffel, C. & Loss, D. Prospects for spin-based quantum computing in quantum dots. Annu. Rev. Condens. Matter Phys. 4, 51–81 (2013).
Vandersypen, L. M. K. et al. Interfacing spin qubits in quantum dots and donors: hot, dense, and coherent. npj Quantum Inf. 3, 34 (2017).
Scappucci, G. et al. The germanium quantum information route. Preprint at https://arxiv.org/abs/2004.08133 (2020).
Tyryshkin, A. M. et al. Electron spin coherence exceeding seconds in high-purity silicon. Nat. Mater. 11, 143–147 (2012).
Yoneda, J. et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nat. Nanotechnol. 13, 102–106 (2018).
Kawakami, E. et al. Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. Nat. Nanotechnol. 9, 666–670 (2014).
Veldhorst, M. et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 9, 981–985 (2014).
Veldhorst, M. et al. A two-qubit logic gate in silicon. Nature 526, 410–414 (2015).
Zajac, D. M. et al. Resonantly driven CNOT gate for electron spins. Science 359, 439–442 (2018).
Watson, T. F. et al. A programmable two-qubit quantum processor in silicon. Nature 555, 633–637 (2018).
Hendrickx, N. W., Franke, D. P., Sammak, A., Scappucci, G. & Veldhorst, M. Fast two-qubit logic with holes in germanium. Nature 577, 487–491 (2020).
Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).
Bulaev, D. V. & Loss, D. Spin relaxation and decoherence of holes in quantum dots. Phys. Rev. Lett. 95, 076805 (2005).
Maurand, R. et al. CMOS silicon spin qubit. Nat. Commun. 7, 13575 (2016).
Crippa, A. et al. Gate-reflectometry dispersive readout and coherent control of a spin qubit in silicon. Nat. Commun. 10, 2776 (2019).
Kloeffel, C., Trif, M. & Loss, D. Strong spin–orbit interaction and helical hole states in Ge/Si nanowires. Phys. Rev. B 84, 195314 (2011).
Maier, F., Kloeffel, C. & Loss, D. Tunable g-factor and phonon-mediated hole spin relaxation in Ge/Si nanowire quantum dots. Phys. Rev. B 87, 161305 (2013).
Kloeffel, C., Trif, M., Stano, P. & Loss, D. Circuit QED with hole-spin qubits in Ge/Si nanowire quantum dots. Phys. Rev. B 88, 241405 (2013).
Kloeffel, C., Rančić, M. J. & Loss, D. Direct Rashba spin–orbit interaction in Si and Ge nanowires with different growth directions. Phys. Rev. B. 97, 235422 (2018).
Yang, C. H. et al. Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting. Nat. Commun. 4, 2069 (2013).
Prechtel, J. H. et al. Decoupling a hole spin qubit from the nuclear spins. Nat. Mater. 15, 981–986 (2016).
Durnev, M. V., Glazov, M. M. & Ivchenko, E. L. Spin–orbit splitting of valence subbands in semiconductor nanostructures. Phys. Rev. B 89, 075430 (2014).
Marcellina, E., Hamilton, A. R., Winkler, R. & Culcer, D. Spin–orbit interactions in inversion-asymmetric two-dimensional hole systems: a variational analysis. Phys. Rev. B 95, 075305 (2019).
Golovach, V. N., Borhani, M. & Loss, D. Electric-dipole-induced spin resonance in quantum dots. Phys. Rev. B 74, 165319 (2006).
Nowack, K. C., Koppens, F. H. L., Nazarov, Y. V. & Vandersypen, L. M. K. Coherent control of a single electron spin with electric fields. Science 318, 1430–1433 (2007).
Bulaev, D. V. & Loss, D. Electric dipole spin resonance for heavy holes in quantum dots. Phys. Rev. Lett. 98, 097202 (2007).
van den Berg et al. Fast spin-orbit qubit in an indium antimonide nanowire. Phys. Rev. Lett. 110, 066806 (2013).
Pioro-Ladriere, M. et al. Electrically driven single-electron spin resonance in a slanting Zeeman field. Nat. Phys. 4, 776–779 (2008).
Koppens, F. H. L. et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006).
Watzinger, H. et al. A germanium hole spin qubit. Nat. Commun. 9, 3902 (2018).
Burkard, G., Gullans, M. J., Mi, X. & Petta, J. R. Superconductor–semiconductor hybrid-circuit quantum electrodynamics. Nat. Rev. Phys. 2, 129–140 (2020).
Brauns, M., Ridderbos, J., Li, A., Bakkers, E. P. A. M. & Zwanenburg, F. A. Highly tuneable hole quantum dots in Ge–Si core-shell nanowires. Appl. Phys. Lett. 109, 143113 (2016).
Conesa-Boj, S. et al. Boosting hole mobility in coherently strained [110]-oriented Ge–Si core–shell nanowires. Nano Lett. 17, 2259–2264 (2017).
Froning, F. N. M. et al. Single, double, and triple quantum dots in Ge/Si nanowires. Appl. Phys. Lett. 113, 073102 (2018).
Ono, K., Austing, D. G., Tokura, Y. & Tarucha, S. Current rectification by Pauli exclusion in a weakly coupled double quantum dot system. Science 297, 1313–1317 (2002).
Yoneda, J. et al. Fast electrical control of single electron spins in quantum dots with vanishing influence from nuclear spins. Phys. Rev. Lett. 113, 267601 (2014).
Takeda, K. et al. S. A fault-tolerant addressable spin qubit in a natural silicon quantum dot. Sci. Adv. 2, e1600694 (2016).
Higginbotham, A. P. et al. Hole spin coherence in a Ge/Si heterostructure nanowire. Nano Lett. 14, 3582–3586 (2014).
Hu, Y., Kuemmeth, F., Lieber, C. M. & Marcus, C. M. Hole spin relaxation in Ge–Si core–shell nanowire qubits. Nat. Nanotechnol. 7, 47–50 (2012).
Trif, M., Golovach, V. N. & Loss, D. Spin dynamics in InAs nanowire quantum dots coupled to a transmission line. Phys. Rev. B 77, 045434 (2008).
Nigg, S. E., Fuhrer, A. & Loss, D. Superconducting grid-bus surface code architecture for hole-spin qubits. Phys. Rev. Lett. 118, 147701 (2017).
Froning, F. N. M. et al. Strong spin–orbit interaction and g-factor renormalization of hole spins in Ge/Si nanowire quantum dots. Preprint at https://arxiv.org/abs/2007.04308 (2020).
Higginbotham, A. P. et al. Antilocalization of coulomb blockade in a Ge/Si nanowire. Phys. Rev. Lett. 112, 216806 (2014).
Dmytruk, O., Chevallier, D., Loss, D. & Klinovaja, J. Renormalization of the quantum dot g-factor in superconducting Rashba nanowires. Phys. Rev. B 98, 165403 (2018).
Kato, Y. et al. Gigahertz electron spin manipulation using voltage-controlled g-tensor modulation. Science 299, 1201–1204 (2003).
Laucht, A. et al. Breaking the rotating wave approximation for a strongly driven dressed single-electron spin. Phys. Rev. B 94, 161302 (2016).
Borjans, F., Croot, X. G., Mi, X., Gullans, M. J. & Petta, J. R. Resonant microwave-mediated interactions between distant electron spins. Nature 577, 195198 (2020).
Acknowledgements
We thank S. Bosco, B. Hetényi, C. Kloeffel, D. Loss, A. Laucht and A. Hamilton for useful discussions. Furthermore, we acknowledge S. Martin and M. Steinacher for technical support. This work was partially supported by the Swiss Nanoscience Institute (SNI), the NCCR QSIT, the NCCR SPIN, the Georg H. Endress Foundation, Swiss NSF (grant no. 179024), the EU H2020 European Microkelvin Platform EMP (grant no. 824109) and FET TOPSQUAD (grant no. 862046).
Author information
Authors and Affiliations
Contributions
F.N.M.F., L.C.C., F.R.B. and D.M.Z. conceived the project and experiments. F.N.M.F. fabricated the device. A.L. and E.P.A.M.B. synthesized the nanowire. F.N.M.F., L.C.C., O.A.H.v.d.M., F.R.B. and D.M.Z. performed the experiments. F.N.M.F., L.C.C., F.R.B. and D.M.Z. analysed the measurements and wrote the manuscript with input from all the authors.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Notes 1 and 2, Figs. 1–4 and Table 1.
Rights and permissions
About this article
Cite this article
Froning, F.N.M., Camenzind, L.C., van der Molen, O.A.H. et al. Ultrafast hole spin qubit with gate-tunable spin–orbit switch functionality. Nat. Nanotechnol. 16, 308–312 (2021). https://doi.org/10.1038/s41565-020-00828-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41565-020-00828-6
This article is cited by
-
On-demand electrical control of spin qubits
Nature Nanotechnology (2023)
-
A single hole spin with enhanced coherence in natural silicon
Nature Nanotechnology (2022)
-
Review of performance metrics of spin qubits in gated semiconducting nanostructures
Nature Reviews Physics (2022)
-
Ultrafast coherent control of a hole spin qubit in a germanium quantum dot
Nature Communications (2022)
-
A singlet-triplet hole spin qubit in planar Ge
Nature Materials (2021)