Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bright solid-state sources for single photons with orbital angular momentum

Abstract

Photons that have a helical phase front, that is, twisted photons, can carry a discrete, in principle, unlimited, but quantized amount of orbital angular momentum (OAM). Hence, twisted single photons constitute a high-dimensional quantum system with information-processing abilities beyond those of two-level single-photon qubits. To date, the generation of single photons carrying OAM has relied on a non-linear process in bulk crystals, for example, spontaneous parametric down-conversion, which limits both the efficiency and the scalability of the source. Here, we present a bright solid-state source of single photons in an OAM superposition state with a single-photon purity of g(2)(0) = 0.115(1) and a collection efficiency of 23(4)%. The mode purity of the single-photon OAM states is further examined via projection measurements. Future developments of integrated quantum photonic devices with pure OAM states as an additional degree of freedom may enable high-dimensional quantum information processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microring resonators embedded with QDs for the generation of single photons carrying quantum superposition states of OAM.
Fig. 2: Characteristics of the microring cavity modes in the superposition states of OAMs with different topological charges (l = 4, 5, 6, 7 and 8).
Fig. 3: Purcell-enhanced single photons carrying OAM.
Fig. 4: Near-field and far-field distributions of single photons carrying the quantum superposition state of OAM.
Fig. 5: The purity of single-photon OAM states.

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are available at https://doi.org/10.6084/m9.figshare.13285514.v2.

References

  1. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    Article  CAS  Google Scholar 

  2. Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6, 488–496 (2012).

    Article  CAS  Google Scholar 

  3. Bozinovic, N. et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013).

    Article  CAS  Google Scholar 

  4. Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).

    Article  CAS  Google Scholar 

  5. Vallone, G. et al. Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett. 113, 060503 (2014).

    Article  Google Scholar 

  6. Bechmann-Pasquinucci, H. & Tittel, W. Quantum cryptography using larger alphabets. Phys. Rev. A 61, 062308 (2000).

    Article  Google Scholar 

  7. Cerf, N. J., Bourennane, M., Karlsson, A. & Gisin, N. Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002).

    Article  Google Scholar 

  8. Romero, J., Giovannini, D., Franke-Arnold, S., Barnett, S. M. & Padgett, M. J. Increasing the dimension in high-dimensional two-photon orbital angular momentum entanglement. Phys. Rev. A 86, 012334 (2012).

    Article  Google Scholar 

  9. Chen, L. et al. Experimental ladder proof of Hardy’s nonlocality for high-dimensional quantum systems. Phys. Rev. A 96, 022115 (2017).

    Article  Google Scholar 

  10. Krenn, M., Handsteiner, J., Fink, M., Fickler, R. & Zeilinger, A. Twisted photon entanglement through turbulent air across Vienna. Proc. Natl Acad. Sci. USA 112, 14197–14201 (2015).

    Article  CAS  Google Scholar 

  11. Krenn, M. et al. Twisted light transmission over 143 km. Proc. Natl Acad. Sci. USA 113, 13648–13653 (2016).

    Article  CAS  Google Scholar 

  12. Sit, A. et al. High-dimensional intracity quantum cryptography with structured photons. Optica 4, 1006–1010 (2017).

    Article  Google Scholar 

  13. Mirhosseini, M. et al. High-dimensional quantum cryptography with twisted light. New J. Phys. 17, 033033 (2015).

    Article  Google Scholar 

  14. Wang, X. L. et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516–519 (2015).

    Article  CAS  Google Scholar 

  15. Stav, T. et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science 361, 1101–1104 (2018).

    Article  CAS  Google Scholar 

  16. Wang, X. L. et al. 18-Qubit entanglement with six photons’ three degrees of freedom. Phys. Rev. Lett. 120, 260502 (2018).

    Article  CAS  Google Scholar 

  17. Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).

    Article  Google Scholar 

  18. Unsleber, S. et al. Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency. Opt. Express 24, 8539–8546 (2016).

    Article  CAS  Google Scholar 

  19. Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    Article  CAS  Google Scholar 

  20. He, Y. M. et al. Deterministic implementation of a bright, on-demand single-photon source with near-unity indistinguishability via quantum dot imaging. Optica 4, 802–808 (2017).

    Article  CAS  Google Scholar 

  21. Wang, H. et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional Hilbert space. Phys. Rev. Lett. 123, 250503 (2019).

    Article  CAS  Google Scholar 

  22. Liu, J. et al. Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters. Rev. Sci. Instrum. 88, 023116 (2017).

    Article  Google Scholar 

  23. Cai, X. et al. Integrated compact optical vortex beam emitters. Science 338, 363–366 (2012).

    Article  CAS  Google Scholar 

  24. Strain, M. J. et al. Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters. Nat. Commun. 5, 4856 (2014).

    Article  CAS  Google Scholar 

  25. Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464–467 (2016).

    Article  CAS  Google Scholar 

  26. Zhang, J. et al. An InP-based vortex beam emitter with monolithically integrated laser. Nat. Commun. 9, 2652 (2018).

    Article  CAS  Google Scholar 

  27. Fickler, R. et al. Quantum entanglement of high angular momenta. Science 338, 640–643 (2012).

    Article  CAS  Google Scholar 

  28. Strauf, S. et al. Self-tuned quantum dot gain in photonic crystal lasers. Phys. Rev. Lett. 96, 127404 (2006).

    Article  CAS  Google Scholar 

  29. Liu, J. et al. A comparison between experiment and theory on few-quantum-dot nanolasing in a photonic-crystal cavity. Opt. Express 21, 28507–28512 (2013).

    Article  CAS  Google Scholar 

  30. Blakemore, J. S. Semiconducting and other major properties of gallium arsenide. J. Appl. Phys. 53, R123 (1982).

    Article  CAS  Google Scholar 

  31. Gehrsitz, S. et al. The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling. J. Appl. Phys. 87, 7825 (2000).

    Article  CAS  Google Scholar 

  32. Zhu, J., Chen, Y., Zhang, Y., Cai, X. & Yu, S. Spin and orbital angular momentum and their conversion in cylindrical vector vortices. Opt. Lett. 39, 4435–4438 (2014).

    Article  Google Scholar 

  33. Zhu, J., Cai, X., Chen, Y. & Yu, S. Theoretical model for angular grating-based integrated optical vortex beam emitters. Opt. Lett. 38, 1343–1345 (2013).

    Article  Google Scholar 

  34. Moreno, I., Davis, J. A., Ruiz, I. & Cottrell, D. M. Decomposition of radially and azimuthally polarized beams using a circular-polarization and vortex-sensing diffraction grating. Opt. Express 18, 7173–7183 (2010).

    Article  CAS  Google Scholar 

  35. Gibson, G. et al. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express 12, 5448–5456 (2004).

    Article  Google Scholar 

  36. Yue, Y. et al. Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber. IEEE Photon. J. 4, 535–543 (2012).

    Article  Google Scholar 

  37. Li, S. & Wang, J. A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings × 22 modes). Sci. Rep. 4, 3853 (2014).

    Article  CAS  Google Scholar 

  38. Vasnetsov, M. V., Pas’ko, V. A. & Soskin, M. S. Analysis of orbital angular momentum of a misaligned optical beam. New J. Phys. 7, 46 (2005).

    Article  Google Scholar 

  39. Winger, M. et al. Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot–cavity system. Phys. Rev. Lett. 103, 207403 (2009).

    Article  Google Scholar 

  40. Zhou, Z. Y. et al. Orbital angular momentum photonic quantum interface. Light Sci. Appl 5, e16019 (2016).

    Article  CAS  Google Scholar 

  41. Liu, S. et al. Coherent manipulation of a three-dimensional maximally entangled state. Phys. Rev. A 98, 062316 (2018).

    Article  Google Scholar 

  42. Heindel, T. et al. Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency. Appl. Phys. Lett. 96, 011107 (2010).

    Article  Google Scholar 

  43. Yuan, X. et al. Uniaxial stress flips the natural quantization axis of a quantum dot for integrated quantum photonics. Nat. Commun. 9, 3058 (2018).

    Article  Google Scholar 

  44. Zhang, Z. et al. Tunable topological charge vortex microlaser. Science 368, 760–763 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.L. thanks Y. F. Xiao, C. H. Dong, Z. Y. Zhou and X. Cai for helpful discussions. This work is supported by the National Key R&D Program of China (2016YFA0301300 and 2018YFA0306100), the Key-Area Research and Development Program of Guangdong Province (2018B030329001), the National Natural Science Foundation of China (91750207, 11874437 and 62035017), the Guangzhou Science and Technology project (201805010004), the Natural Science Foundation of Guangdong (2018B030311027) and the National Supercomputer Center in Guangzhou.

Author information

Authors and Affiliations

Authors

Contributions

X.W. presented the idea. J.L. and X.W. conceived the project. J.L. directed the experiment. B.C. and S.L. contributed to the structure simulations. Y.Y. grew the quantum dot wafers. B.C., R.S., J.L. and B.Y. fabricated the devices. B.C., J.L. and Y.W. characterized the devices. B.C., J.L., T.Z., X.W. and Y.W. analysed the data. J.L. wrote the manuscript with inputs from all authors. J.L. and X.W. supervised the project.

Corresponding authors

Correspondence to Jin Liu or Xuehua Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, discussion and refs. 1–11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Wei, Y., Zhao, T. et al. Bright solid-state sources for single photons with orbital angular momentum. Nat. Nanotechnol. 16, 302–307 (2021). https://doi.org/10.1038/s41565-020-00827-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-020-00827-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing