Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles

Abstract

The past 30 years have seen progress in the development of Pt-based nanocatalysts for the oxygen reduction reaction, and some are now in production on a commercial basis and used for polymer electrolyte fuel cells (PEFCs) for automotives and other applications. Further improvements in catalytic activity are required for wider uptake of PEFCs, however. In laboratories, researchers have developed various catalysts that have much higher activities than commercial ones, and these state-of-the-art catalysts have potential to improve energy conversion efficiencies and reduce the usage of platinum in PEFCs. There are several technical issues that must be solved before they can be applied in fuel cell vehicles, which require a high power density and practical durability, as well as high efficiency. In this Review, the development history of Pt-based nanocatalysts and recent analytical studies are summarized to identify the origin of these technical issues. Promising strategies for overcoming those issues are also discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PEFC configuration and typical performance characteristic.
Fig. 2: Timeline of recent progress in research on cathode catalysts for PEFCs.
Fig. 3: Timeline of recent studies on power density losses for low-Pt-loading cells.
Fig. 4: Schematics of catalyst degradation mechanisms and mitigating strategies.
Fig. 5

Similar content being viewed by others

References

  1. Yoshida, T. & Kojima, K. Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society. Interface 24, 45–49 (2015).

    CAS  Google Scholar 

  2. Lohse-Busch, H. et al. Automotive fuel cell stack and system efficiency and fuel consumption based on vehicle testing on a chassis dynamometer at minus 18 °C to positive 35 °C temperatures. Int. J. Hydrogen Energy 45, 861–872 (2020).

    Article  CAS  Google Scholar 

  3. Kongkanand, A. & Mathias, M. F. The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J. Phys. Chem. Lett. 7, 1127–1137 (2016).

    Article  CAS  Google Scholar 

  4. Thompson, S. T. et al. Direct hydrogen fuel cell electric vehicle cost analysis: system and high-volume manufacturing description, validation, and outlook. J. Power Sources 399, 304–313 (2018).

    Article  CAS  Google Scholar 

  5. Wilson, M. S. & Gottesfeld, S. Thin-film catalyst layers for polymer electrolyte fuel-cell electrodes. J. Appl. Electrochem. 22, 1–7 (1992).

    Article  CAS  Google Scholar 

  6. Mukerjee, S., Srinivasan, S., Soriaga, M. P. & McBreen, J. Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction: an in situ XANES and EXAFS investigation. J. Electrochem. Soc. 142, 1409–1422 (1995).

    Article  CAS  Google Scholar 

  7. Banham, D. et al. Critical advancements in achieving high power and stable nonprecious metal catalyst-based MEAs for real-world proton exchange membrane fuel cell applications. Sci. Adv. 4, eaar7180 (2018).

  8. Chung, H. T. et al. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 357, 479–483 (2017).

    Article  CAS  Google Scholar 

  9. van der Vliet, D. F. et al. Unique electrochemical adsorption properties of Pt-skin surfaces. Angew. Chem. Int. Ed. 51, 3139–3142 (2012).

    Article  Google Scholar 

  10. Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007).

    Article  CAS  Google Scholar 

  11. Stephens, I. E. L. et al. Tuning the activity of Pt(111) for oxygen electroreduction by subsurface alloying. J. Am. Chem. Soc. 133, 5485–5491 (2011).

    Article  CAS  Google Scholar 

  12. Asano, M., Kawamura, R., Sasakawa, R., Todoroki, N. & Wadayama, T. Oxygen reduction reaction activity for strain-controlled Pt-based model alloy catalysts: surface strains and direct electronic effects induced by alloying elements. ACS Catal. 6, 5285–5289 (2016).

    Article  CAS  Google Scholar 

  13. Wakisaka, M. et al. Unprecedented dependence of the oxygen reduction activity on Co content at Pt skin/Pt-Co(111) single crystal electrodes. Electrochem. Commun. 67, 47–50 (2016).

    Article  CAS  Google Scholar 

  14. Norskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  CAS  Google Scholar 

  15. Viswanathan, V., Hansen, H. A., Rossmeisl, J. & Norskov, J. K. Universality in oxygen reduction electrocatalysis on metal surfaces. ACS Catal. 2, 1654–1660 (2012).

    Article  CAS  Google Scholar 

  16. Jinnouchi, R., Kodama, K., Hatanaka, T. & Morimoto, Y. First principles based mean field model for oxygen reduction reaction. Phys. Chem. Chem. Phys. 13, 21070–21083 (2011).

    Article  CAS  Google Scholar 

  17. Kulkarni, A., Siahrostami, S., Patel, A. & Norskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 118, 2302–2312 (2018).

    Article  CAS  Google Scholar 

  18. Zhang, J. et al. Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J. Phys. Chem. B 108, 10955–10964 (2004).

    Article  CAS  Google Scholar 

  19. Aoki, N. et al. Electrochemical properties and single cell performance of Pd core-Pt shell structured catalyst synthesized by a simple direct displacement reaction. J. Electrochem. Soc. 167, 044513 (2020).

    Article  CAS  Google Scholar 

  20. Kuttiyiel, K. A. et al. Pt monolayer on Au-stabilized PdNi core-shell nanoparticles for oxygen reduction reaction. Electrochim. Acta 110, 267–272 (2013).

    Article  CAS  Google Scholar 

  21. Zhang, J., Yang, H. Z., Fang, J. Y. & Zou, S. Z. Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Lett. 10, 638–644 (2010).

    Article  CAS  Google Scholar 

  22. Choi, S. I. et al. Synthesis and characterization of 9 nm Pt-Ni octahedra with a record high activity of 3.3 A/mg(Pt) for the oxygen reduction reaction. Nano Lett. 13, 3420–3425 (2013).

    Article  CAS  Google Scholar 

  23. Huang, X. Q. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 348, 1230–1234 (2015).

    Article  CAS  Google Scholar 

  24. Niu, G. D. et al. Synthesis of Pt-Ni octahedra in continuous-flow droplet reactors for the scalable production of highly active catalysts toward oxygen reduction. Nano Lett. 16, 3850–3857 (2016).

    Article  CAS  Google Scholar 

  25. Chen, C. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014).

    Article  CAS  Google Scholar 

  26. Li, M. F. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354, 1414–1419 (2016).

    Article  CAS  Google Scholar 

  27. Bu, L. Z. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 354, 1410–1414 (2016).

    Article  CAS  Google Scholar 

  28. Tian, X. L. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 366, 850–856 (2019).

    Article  CAS  Google Scholar 

  29. Zhang, C. L., Hwang, S. Y., Trout, A. & Peng, Z. M. Solid-state chemistry-enabled scalable production of octahedral Pt-Ni alloy electrocatalyst for oxygen reduction reaction. J. Am. Chem. Soc. 136, 7805–7808 (2014).

    Article  CAS  Google Scholar 

  30. Kuzume, A., Herrero, E. & Feliu, J. M. Oxygen reduction on stepped platinum surfaces in acidic media. J. Electroanal. Chem. 599, 333–343 (2007).

    Article  CAS  Google Scholar 

  31. Hoshi, N., Nakamura, M. & Hitotsuyanagi, A. Active sites for the oxygen reduction reaction on the high index planes of Pt. Electrochim. Acta 112, 899–904 (2013).

    Article  CAS  Google Scholar 

  32. Bandarenka, A. S., Hansen, H. A., Rossmeisl, J. & Stephens, I. E. L. Elucidating the activity of stepped Pt single crystals for oxygen reduction. Phys. Chem. Chem. Phys. 16, 13625–13629 (2014).

    Article  CAS  Google Scholar 

  33. Jinnouchi, R., Kodama, K., Nagoya, A. & Morimoto, Y. Simulated volcano plot of oxygen reduction reaction on stepped Pt surfaces. Electrochim. Acta 230, 470–478 (2017).

    Article  CAS  Google Scholar 

  34. Calle-Vallejo, F. et al. Why conclusions from platinum model surfaces do not necessarily lead to enhanced nanoparticle catalysts for the oxygen reduction reaction. Chem. Sci. 8, 2283–2289 (2017).

    Article  CAS  Google Scholar 

  35. Garlyyev, B. et al. Optimizing the size of platinum nanoparticles for enhanced mass activity in the electrochemical oxygen reduction reaction. Angew. Chem. Int. Ed. 58, 9596–9600 (2019).

    Article  CAS  Google Scholar 

  36. Strmcnik, D. et al. Enhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanide. Nat. Chem. 2, 880–885 (2010).

    Article  CAS  Google Scholar 

  37. Subbaraman, R., Strmcnik, D., Stamenkovic, V. & Markovic, N. M. Three phase interfaces at electrified metal-solid electrolyte systems 1. Study of the Pt(hkl)-Nafion interface. J. Phys. Chem. C 114, 8414–8422 (2010).

    Article  CAS  Google Scholar 

  38. Shinozaki, K., Morimoto, Y., Pivovar, B. S. & Kocha, S. S. Suppression of oxygen reduction reaction activity on Pt-based electrocatalysts from ionomer incorporation. J. Power Sources 325, 745–751 (2016).

    Article  CAS  Google Scholar 

  39. Kodama, K. et al. Effect of the side-chain structure of perfluoro-sulfonic acid ionomers on the oxygen reduction reaction on the surface of Pt. ACS Catal. 8, 694–700 (2018).

    Article  CAS  Google Scholar 

  40. Takeshita, T., Kamitaka, Y., Shinozaki, K., Kodama, K. & Morimoto, Y. Evaluation of ionomer coverage on Pt catalysts in polymer electrolyte membrane fuel cells by CO stripping voltammetry and its effect on oxygen reduction reaction activity. J. Electroanal. Chem. 871, 114250 (2020).

    Article  CAS  Google Scholar 

  41. Gasteiger, H. A., Kocha, S. S., Sompalli, B. & Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B 56, 9–35 (2005).

    Article  CAS  Google Scholar 

  42. Greszler, T. A., Caulk, D. & Sinha, P. The impact of platinum loading on oxygen transport resistance. J. Electrochem. Soc. 159, F831–F840 (2012).

    Article  CAS  Google Scholar 

  43. Ohma, A. et al. Analysis of proton exchange membrane fuel cell catalyst layers for reduction of platinum loading at Nissan. Electrochim. Acta 56, 10832–10841 (2011).

    Article  CAS  Google Scholar 

  44. Nonoyama, N., Okazaki, S., Weber, A. Z., Ikogi, Y. & Yoshida, T. Analysis of oxygen-transport diffusion resistance in proton-exchange-membrane fuel cells. J. Electrochem. Soc. 158, B416–B423 (2011).

    Article  CAS  Google Scholar 

  45. Owejan, J. P., Owejan, J. E. & Gu, W. B. Impact of platinum loading and catalyst layer structure on PEMFC performance. J. Electrochem. Soc. 160, F824–F833 (2013).

    Article  CAS  Google Scholar 

  46. Schuler, T. et al. Fuel-cell catalyst-layer resistance via hydrogen limiting-current measurements. J. Electrochem. Soc. 166, F3020–F3031 (2019).

    Article  CAS  Google Scholar 

  47. Suzuki, T., Kudo, K. & Morimoto, Y. Model for investigation of oxygen transport limitation in a polymer electrolyte fuel cell. J. Power Sources 222, 379–389 (2013).

    Article  CAS  Google Scholar 

  48. Kudo, K., Jinnouchi, R. & Morimoto, Y. Humidity and temperature dependences of oxygen transport resistance of Nafion thin film on platinum electrode. Electrochim. Acta 209, 682–690 (2016).

    Article  CAS  Google Scholar 

  49. Jinnouchi, R., Kudo, K., Kitano, N. & Morimoto, Y. Molecular dynamics simulations on O2 permeation through Nafion ionomer on platinum surface. Electrochim. Acta 188, 767–776 (2016).

    Article  CAS  Google Scholar 

  50. Karan, K. Interesting facets of surface, interfacial, and bulk characteristics of perfluorinated ionomer films. Langmuir 35, 13489–13520 (2019).

    Article  CAS  Google Scholar 

  51. Rolfi, A., Oldani, C., Merlo, L., Facchi, D. & Ruffo, R. New perfluorinated ionomer with improved oxygen permeability for application in cathode polymeric electrolyte membrane fuel cell. J. Power Sources 396, 95–101 (2018).

    Article  CAS  Google Scholar 

  52. Katzenberg, A. et al. Highly permeable perfluorinated sulfonic acid ionomers for improved electrochemical devices: insights into structure-property relationships. J. Am. Chem. Soc. 142, 3742–3752 (2020).

    Article  CAS  Google Scholar 

  53. Kamitaka, Y., Takeshita, T. & Morimoto, Y. MgO-templated mesoporous carbon as a catalyst support for polymer electrolyte fuel cells. Catalysts 8, 230 (2018).

  54. Ott, S. et al. Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells. Nat. Mater. 19, 77–85 (2020).

    Article  CAS  Google Scholar 

  55. Yarlagadda, V. et al. Boosting fuel cell performance with accessible carbon mesopores. ACS Energy Lett. 3, 618–621 (2018).

    Article  CAS  Google Scholar 

  56. Liu, W. J., Wu, B. L. & Cha, C. S. Surface diffusion and the spillover of H-adatoms and oxygen-containing surface species on the surface of carbon black and Pt/C porous electrodes. J. Electroanal. Chem. 476, 101–108 (1999).

    Article  CAS  Google Scholar 

  57. Chan, K. & Eikerling, M. A pore-scale model of oxygen reduction in ionomer-free catalyst layers of PEFCs. J. Electrochem. Soc. 158, B18–B28 (2011).

    Article  CAS  Google Scholar 

  58. Liu, J. J. & Zenyuk, I. Proton transport in ionomer-free regions of polymer electrolyte fuel cells and implications for oxygen reduction reaction. Curr. Opin. Electrochem. 12, 202–208 (2018).

    Article  CAS  Google Scholar 

  59. Hu, L. M., Zhang, M. X., Babu, S. K., Kongkanand, A. & Litster, S. Ionic conductivity over metal/water interfaces in ionomer-free fuel cell electrodes. ChemElectroChem 6, 2659–2666 (2019).

    Article  CAS  Google Scholar 

  60. Darling, R. M. & Meyers, J. P. Kinetic model of platinum dissolution in PEMFCs. J. Electrochem. Soc. 150, A1523–A1527 (2003).

    Article  CAS  Google Scholar 

  61. Topalov, A. A. et al. Dissolution of platinum: limits for the deployment of electrochemical energy conversion? Angew. Chem. Int. Ed. 51, 12613–12615 (2012).

    Article  CAS  Google Scholar 

  62. Pizzutilo, E. et al. On the need of improved accelerated degradation protocols (ADPs): examination of platinum dissolution and carbon corrosion in half-cell tests. J. Electrochem. Soc. 163, F1510–F1514 (2016).

    Article  CAS  Google Scholar 

  63. Lopes, P. P. et al. Eliminating dissolution of platinum-based electrocatalysts at the atomic scale. Nat. Mater. 19, 1207–1214 (2020).

    Article  CAS  Google Scholar 

  64. Wilson, M. S., Garzon, F. H., Sickafus, K. E. & Gottesfeld, S. Surface-area loss of supported platinum in polymer electrolyte fuel-cells. J. Electrochem. Soc. 140, 2872–2877 (1993).

    Article  CAS  Google Scholar 

  65. Ferreira, P. J. et al. Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells: a mechanistic investigation. J. Electrochem. Soc. 152, A2256–A2271 (2005).

    Article  Google Scholar 

  66. Holby, E. F., Sheng, W. C., Shao-Horn, Y. & Morgan, D. Pt nanoparticle stability in PEM fuel cells: influence of particle size distribution and crossover hydrogen. Energy Environ. Sci. 2, 865–871 (2009).

    Article  CAS  Google Scholar 

  67. Jinnouchi, R., Toyoda, E., Hatanaka, T. & Morimoto, Y. First principles calculations on site-dependent dissolution potentials of supported and unsupported Pt particles. J. Phys. Chem. C 114, 17557–17568 (2010).

    Article  CAS  Google Scholar 

  68. Chattot, R. et al. Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis. Nat. Mater. 17, 827–833 (2018).

    Article  CAS  Google Scholar 

  69. Braaten, J. P., Xu, X. M., Cai, Y., Kongkanand, A. & Litster, S. Contaminant cation effect on oxygen transport through the ionomers of polymer electrolyte membrane fuel cells. J. Electrochem. Soc. 166, F1337–F1343 (2019).

    Article  CAS  Google Scholar 

  70. Borup, R. L. et al. Recent developments in catalyst-related PEM fuel cell durability. Curr. Opin. Electrochem. 21, 192–200 (2020).

    Article  CAS  Google Scholar 

  71. Wang, D. L. et al. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 12, 81–87 (2013).

    Article  CAS  Google Scholar 

  72. Beermann, V. et al. Rh-Doped Pt-Ni octahedral nanoparticles: understanding the correlation between elemental distribution, oxygen reduction reaction, and shape stability. Nano Lett. 16, 1719–1725 (2016).

    Article  CAS  Google Scholar 

  73. Zhao, X. et al. High-performance nitrogen-doped intermetallic PtNi catalyst for the oxygen reduction reaction. ACS Catal. 10, 10637–10645 (2020).

    Article  CAS  Google Scholar 

  74. Zhao, X. et al. Simultaneous improvements in performance and durability of an octahedral PtNix/C electrocatalyst for next-generation fuel cells by continuous, compressive, and concave Pt skin layers. ACS Catal. 7, 4642–4654 (2017).

    Article  CAS  Google Scholar 

  75. Takenaka, S. et al. Improvement in the durability of pt electrocatalysts by coverage with silica layers. J. Phys. Chem. C 111, 15133–15136 (2007).

    Article  CAS  Google Scholar 

  76. Wen, Z. H., Liu, J. & Li, J. H. Core/shell Pt/C nanoparticles embedded in mesoporous carbon as a methanol-tolerant cathode catalyst in direct methanol fuel cells. Adv. Mater. 20, 743–747 (2008).

    Article  CAS  Google Scholar 

  77. Chung, D. Y. et al. Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction. J. Am. Chem. Soc. 137, 15478–15485 (2015).

    Article  CAS  Google Scholar 

  78. Yamada, H., Kato, H. & Kodama, K. Cell performance and durability of Pt/C cathode catalyst covered by dopamine derived carbon thin layer for polymer electrolyte fuel cells. J. Electrochem. Soc. 167, 084508 (2020).

    Article  CAS  Google Scholar 

  79. Newton, J. E., Preece, J. A., Rees, N. V. & Horswell, S. L. Nanoparticle catalysts for proton exchange membrane fuel cells: can surfactant effects be beneficial for electrocatalysis? Phys. Chem. Chem. Phys. 16, 11435–11446 (2014).

    Article  CAS  Google Scholar 

  80. Kodama, K., Jinnouchi, R., Takahashi, N., Murata, H. & Morimoto, Y. Activities and stabilities of Au-modified stepped-Pt single-crystal electrodes as model cathode catalysts in polymer electrolyte fuel cells. J. Am. Chem. Soc. 138, 4194–4200 (2016).

    Article  CAS  Google Scholar 

  81. Shao, M. H., Peles, A. & Shoemaker, K. Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. Nano Lett. 11, 3714–3719 (2011).

    Article  CAS  Google Scholar 

  82. Perez-Alonso, F. J. et al. The effect of size on the oxygen electroreduction activity of mass-selected platinum nanoparticles. Angew. Chem. Int. Ed. 51, 4641–4643 (2012).

    Article  CAS  Google Scholar 

  83. Tian, Z. Q., Jiang, S. P., Liu, Z. C. & Li, L. Polyelectrolyte-stabilized Pt nanoparticles as new electrocatalysts for low temperature fuel cells. Electrochem. Commun. 9, 1613–1618 (2007).

    Article  CAS  Google Scholar 

  84. Zhou, Z. Y., Kang, X. W., Song, Y. & Chen, S. W. Ligand-mediated electrocatalytic activity of Pt nanoparticles for oxygen reduction reactions. J. Phys. Chem. C. 116, 10592–10598 (2012).

    Article  CAS  Google Scholar 

  85. Chung, Y. H., Chung, D. Y., Jung, N. & Sung, Y. E. Tailoring the electronic structure of nanoelectrocatalysts induced by a surface-capping organic molecule for the oxygen reduction reaction. J. Phys. Chem. Lett. 4, 1304–1309 (2013).

    Article  CAS  Google Scholar 

  86. Wada, N., Nakamura, M. & Hoshi, N. Structural effects on the oxygen reduction reaction on Pt single-crystal electrodes modified with melamine. Electrocatalysis 11, 275–281 (2020).

    Article  CAS  Google Scholar 

  87. Miyabayashi, K., Nishihara, H. & Miyake, M. Platinum nanoparticles modified with alkylamine derivatives as an active and stable catalyst for oxygen reduction reaction. Langmuir 30, 2936–2942 (2014).

    Article  CAS  Google Scholar 

  88. Yamazaki, S., Asahi, M. & Ioroi, T. Promotion of oxygen reduction on a porphyrazine-modified Pt catalyst surface. Electrochim. Acta 297, 725–734 (2019).

    Article  CAS  Google Scholar 

  89. Ioroi, T., Siroma, Z., Fujiwara, N., Yamazaki, S. & Yasuda, K. Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells. Electrochem. Commun. 7, 183–188 (2005).

    Article  CAS  Google Scholar 

  90. Takasaki, F. et al. Carbon-free Pt electrocatalysts supported on SnO2 for polymer electrolyte fuel cells: electrocatalytic activity and durability. J. Electrochem. Soc. 158, B1270–B1275 (2011).

    Article  CAS  Google Scholar 

  91. Dou, M. L. et al. SnO2 nanocluster supported Pt catalyst with high stability for proton exchange membrane fuel cells. Electrochim. Acta 92, 468–473 (2013).

    Article  CAS  Google Scholar 

  92. Fabbri, E., Rabis, A., Kotz, R. & Schmidt, T. J. Pt nanoparticles supported on Sb-doped SnO2 porous structures: developments and issues. Phys. Chem. Chem. Phys. 16, 13672–13681 (2014).

    Article  CAS  Google Scholar 

  93. Kakinuma, K. et al. Electronic states and transport phenomena of Pt nanoparticle catalysts supported on Nb-doped SnO2 for polymer electrolyte fuel cells. ACS Appl. Mater. Interfaces 11, 34957–34963 (2019).

    Article  CAS  Google Scholar 

  94. Beermann, V. et al. Real-time imaging of activation and degradation of carbon supported octahedral Pt-Ni alloy fuel cell catalysts at the nanoscale using in situ electrochemical liquid cell STEM. Energy Environ. Sci. 12, 2476–2485 (2019).

    Article  CAS  Google Scholar 

  95. van der Vliet, D. F. et al. Mesostructured thin films as electrocatalysts with tunable composition and surface morphology. Nat. Mater. 11, 1051–1058 (2012).

    Article  Google Scholar 

  96. Hernandez-Fernandez, P. et al. Mass-selected nanoparticles of PtxY as model catalysts for oxygen electroreduction. Nat. Chem. 6, 732–738 (2014).

    Article  CAS  Google Scholar 

  97. Pan, L. J., Ott, S., Dionigi, F. & Strasser, P. Current challenges related to the deployment of shape-controlled Pt alloy oxygen reduction reaction nanocatalysts into low Pt-loaded cathode layers of proton exchange membrane fuel cells. Curr. Opin. Electrochem. 18, 61–71 (2019).

    Article  CAS  Google Scholar 

  98. Zalitis, C., Kucernak, A., Lin, X. Q. & Sharman, J. Electrochemical measurement of intrinsic oxygen reduction reaction activity at high current densities as a function of particle size for Pt4-xCox/C (x = 0, 1, 3) catalysts. ACS Catal. 10, 4361–4376 (2020).

    Article  CAS  Google Scholar 

  99. Inaba, M. et al. Benchmarking high surface area electrocatalysts in a gas diffusion electrode: measurement of oxygen reduction activities under realistic conditions. Energy Environ. Sci. 11, 988–994 (2018).

    Article  CAS  Google Scholar 

  100. Rasmussen, K. D., Wenzel, H., Bangs, C., Petavratzi, E. & Liu, G. Platinum demand and potential bottlenecks in the global green transition: a dynamic material flow analysis. Environ. Sci. Technol. 53, 11541–11551 (2019).

    Article  CAS  Google Scholar 

  101. Proietti, E. et al. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2, 416 (2011).

    Article  Google Scholar 

  102. Uddin, A. et al. High power density platinum group metal-free cathodes for polymer electrolyte fuel cells. ACS Appl. Mater. Interfaces 12, 2216–2224(2020).

    Article  CAS  Google Scholar 

  103. Gittleman, C. S., Kongkanand, A., Masten, D. & Gu, W. B. Materials research and development focus areas for low cost automotive proton-exchange membrane fuel cells. Curr. Opin. Electrochem. 18, 81–89 (2019).

    Article  CAS  Google Scholar 

  104. Mun, Y. et al. Versatile strategy for tuning ORR activity of a single Fe-N4 site by controlling electron-withdrawing/donating properties of a carbon plane. J. Am. Chem. Soc. 141, 6254–6262 (2019).

    Article  CAS  Google Scholar 

  105. Chong, L. et al. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 362, 1276–1281 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kensaku Kodama.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Zongping Shao and other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kodama, K., Nagai, T., Kuwaki, A. et al. Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles. Nat. Nanotechnol. 16, 140–147 (2021). https://doi.org/10.1038/s41565-020-00824-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-020-00824-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing