Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

An industrial perspective on catalysts for low-temperature CO2 electrolysis

Abstract

Electrochemical conversion of CO2 to useful products at temperatures below 100 °C is nearing the commercial scale. Pilot units for CO2 conversion to CO are already being tested. Units to convert CO2 to formic acid are projected to reach pilot scale in the next year. Further, several investigators are starting to observe industrially relevant rates of the electrochemical conversion of CO2 to ethanol and ethylene, with the hydrogen needed coming from water. In each case, Faradaic efficiencies of 80% or more and current densities above 200 mA cm2 can be reproducibly achieved. Here we describe the key advances in nanocatalysts that lead to the impressive performance, indicate where additional work is needed and provide benchmarks that others can use to compare their results.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An artist’s illustration of a CO2 electrode.
Fig. 2: An illustration of how various factors affect the cost of producing CO.

Similar content being viewed by others

References

  1. Kaczur, J. J., Yang, H., Liu, Z., Sajjad, S. D. & Masel, R. I. A review of the use of immobilized ionic liquids in the electrochemical conversion of CO2. J. Carbon Res. 6, 33 (2020).

    Article  CAS  Google Scholar 

  2. Ross, M. B. et al. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2, 648–658 (2019).

    Article  CAS  Google Scholar 

  3. Xie, J., Huang, Y., Wu, M. & Wang, Y. Electrochemical carbon dioxide splitting. ChemElectroChem 6, 1587–1604 (2019).

    Article  CAS  Google Scholar 

  4. Song, J. T., Song, H., Kim, B. & Oh, J. Towards higher rate electrochemical CO2 conversion: from liquid-phase to gas-phase systems. Catalysts 9, 224 (2019).

    Article  Google Scholar 

  5. Li, F., MacFarlane, D. R. & Zhang, J. Recent advances in the nanoengineering of electrocatalysts for CO2 reduction. Nanoscale 10, 6235–6260 (2018).

    Article  CAS  Google Scholar 

  6. Nwabara, U. O., Cofell, E. R., Verma, S., Negro, E. & Kenis, P. J. A. Durable cathodes and electrolyzers for the efficient aqueous electrochemical reduction of CO2. ChemSusChem 13, 855–875 (2020).

    Article  CAS  Google Scholar 

  7. Lee, M.-Y. et al. Current achievements and the future direction of electrochemical CO2 reduction: a short review. Crit. Rev. Environ. Sci. Technol. 50, 769–815 (2020).

    Article  CAS  Google Scholar 

  8. Siemens CO2 for a Clean Performance: Rheticus Research Project Enters Phase 2 https://press.siemens.com/global/en/pressrelease/research-project-rheticus (2019).

  9. Krause, R. et al. Industrial application aspects of the electrochemical reduction of CO2 to CO in aqueous electrolyte. Chem. Ing. Tech. 92, 53–61 (2020).

    Article  CAS  Google Scholar 

  10. Haas, T., Krause, R., Weber, R., Demler, M. & Schmid, G. Technical photosynthesis involving CO2 electrolysis and fermentation. Nat. Catal. 1, 32–39 (2018).

    Article  CAS  Google Scholar 

  11. Matthews, T. S. et al. On the route to commercialization of a CO2 electrolyzer: lessons learned from an industry effort to fight climate change. Prepr. Pap. Am. Chem. Soc. Div. Energy Fuels 60, 222–223 (2015).

    CAS  Google Scholar 

  12. Kaczur, J. J., Yang, H., Liu, Z., Sajjad, S. D. & Masel, R. I. Carbon dioxide and water electrolysis using new alkaline stable anion membranes. Front. Chem. 6, 263 (2018).

    Article  Google Scholar 

  13. Yang, H., Kaczur, J. J., Sajjad, S. D. & Masel, R. I. Electrochemical conversion of CO2 to formic acid utilizing Sustainion membranes. J. CO2 Util. 20, 208–217 (2017).

  14. Kaczur, J. J., Yang, H., Sajjad, S. D. & Masel, R. I. Method and system for electrochemical production of formic acid from carbon dioxide. US patent 10,047,446 (2018).

  15. Yang, H., Kaczur, J. J., Sajjad, S. D. & Masel, R. I. CO2 conversion to formic acid in a three compartment cell with sustainion membranes. ECS Trans. 77, 1425–1431 (2017).

    Article  CAS  Google Scholar 

  16. Xia, C. et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4, 776–785 (2019).

    Article  CAS  Google Scholar 

  17. Zhu, Q. et al. Carbon dioxide electroreduction to C2 products over copper–cuprous oxide derived from electrosynthesized copper complex. Nat. Commun. 10, 3851 (2019).

  18. Li, F. et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nat. Catal. 3, 75–82 (2020).

    Article  CAS  Google Scholar 

  19. García de Arquer, F. P. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A /cm2. Science 367, 661–666 (2020).

    Article  Google Scholar 

  20. Wang, X. et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat. Energy https://doi.org/10.1038/s41560-020-0607-8 (2020).

  21. Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581, 178–183 (2020).

    Article  CAS  Google Scholar 

  22. Dinh, C.-T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    Article  CAS  Google Scholar 

  23. Vennekoetter, J.-B., Scheuermann, T., Sengpiel, R. & Wessling, M. The electrolyte matters: stable systems for high rate electrochemical CO2 reduction. J. CO2 Util. 32, 202–213 (2019).

  24. Romero Cuellar, N. S. et al. Two-step electrochemical reduction of CO2 towards multi-carbon products at high current densities. J. CO2 Utilization 36, 263–275 (2020).

  25. Romero Cuellar, N. S., Wiesner-Fleischer, K., Fleischer, M., Rucki, A. & Hinrichsen, O. Advantages of CO over CO2 as reactant for electrochemical reduction to ethylene, ethanol and n-propanol on gas diffusion electrodes at high current densities. Electrochim. Acta 307, 164–175 (2019).

    Article  CAS  Google Scholar 

  26. Jouny, M., Hutchings, G. S. & Jiao, F. Carbon monoxide electroreduction as an emerging platform for carbon utilization. Nat. Catal. 2, 1062–1070 (2019).

    Article  CAS  Google Scholar 

  27. Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    Article  CAS  Google Scholar 

  28. Gurudayal et al. Sequential cascade electrocatalytic conversion of carbon dioxide to C–C coupled products. ACS Appl. Energy Mater. 2, 4551–4559 (2019).

    Article  CAS  Google Scholar 

  29. Zhang, H., Li, J., Cheng, M.-J. & Lu, Q. CO electroreduction: current development and understanding of Cu-based catalysts. ACS Catal. 9, 49–65 (2019).

    Article  CAS  Google Scholar 

  30. Ren, S. et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 365, 367–369 (2019).

    Article  CAS  Google Scholar 

  31. Wang, Q., Zhang, Y., Lin, H. & Zhu, J. Recent advances in metal–organic frameworks for photo-/electrocatalytic CO2 reduction. Chemistry 25, 14026–14035 (2019).

    Article  CAS  Google Scholar 

  32. Zhang, E. et al. Bismuth single atoms resulting from transformation of metal–organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 141, 16569–16573 (2019).

    Article  CAS  Google Scholar 

  33. Jeong, H.-Y. et al. Achieving highly efficient CO2 to CO electroreduction exceeding 300 mA cm−2 with single-atom nickel electrocatalysts. J. Mater. Chem. A 7, 10651–10661 (2019).

    Article  CAS  Google Scholar 

  34. Zheng, T. et al. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule 3, 265–278 (2019).

    Article  CAS  Google Scholar 

  35. Li, J., Zhang, Y. & Kornienko, N. Heterogeneous electrocatalytic reduction of CO2 promoted by secondary coordination sphere effects. New J. Chem. https://doi.org/10.1039/C9NJ05892C (2020).

  36. Ovalle, V. J. & Waegele, M. M. Understanding the impact of N-arylpyridinium ions on the selectivity of CO2 reduction at the Cu/electrolyte interface. J. Phys. Chem. C 123, 24453–24460 (2019).

    Article  CAS  Google Scholar 

  37. Sinha, S. & Warren, J. J. Unexpected solvent effect in electrocatalytic CO2 to CO conversion revealed using asymmetric metalloporphyrins. Inorg. Chem. 57, 12650–12656 (2018).

    Article  CAS  Google Scholar 

  38. Shen, J., Lan, D. & Yang, T. Influence of supporting electrolyte on the electrocatalysis of CO2 reduction by cobalt protoporphyrin. Int. J. Electrochem. Sci. 13, 9847–9857 (2018).

    Article  CAS  Google Scholar 

  39. Zhao, M. et al. Inhibiting hydrogen evolution using a chloride adlayer for efficient electrochemical CO2 reduction on Zn electrodes. ACS Appl Mater. Interfaces 12, 4565–4571 (2020).

    Article  CAS  Google Scholar 

  40. Yoshida, T. et al. Ionic-caged heterometallic bismuth–platinum complex exhibiting electrocatalytic CO2 reduction. Dalton Trans. 49, 2652–2660 (2020).

    Article  CAS  Google Scholar 

  41. Suter, S. & Haussener, S. Optimizing mesostructured silver catalysts for selective carbon dioxide conversion into fuels. Energy Environ. Sci. 12, 1668–1678 (2019).

    Article  CAS  Google Scholar 

  42. Pankhurst, J. R., Guntern, Y. T., Mensi, M. & Buonsanti, R. Molecular tunability of surface-functionalized metal nanocrystals for selective electrochemical CO2 reduction. Chem. Sci. 10, 10356–10365 (2019).

    Article  CAS  Google Scholar 

  43. Christensen, R., Hansen, H. A. & Vegge, T. Identifying systematic DFT errors in catalytic reactions. Catal. Sci. Technol. 5, 4946–4949 (2015).

    Article  CAS  Google Scholar 

  44. Yoo, J. S., Christensen, R., Vegge, T., Norskov, J. K. & Studt, F. Theoretical insight into the trends that guide the electrochemical reduction of carbon dioxide to formic acid. ChemSusChem 9, 358–363 (2016).

    Article  CAS  Google Scholar 

  45. Studt, F., Abild-Pedersen, F., Varley, J. B. & Nørskov, J. K. CO and CO2 hydrogenation to methanol calculated using the BEEF-vdW functional. Catal. Lett. 143, 71–73 (2013).

    Article  CAS  Google Scholar 

  46. Liu, Z., Yang, H., Kutz, R. & Masel, R. I. CO2 electrolysis to CO and O2 at high selectivity, stability and efficiency using Sustainion membranes. J. Electrochem. Soc. 165, J3371–J3377 (2018).

    Article  CAS  Google Scholar 

  47. Edwards, J. P. et al. Efficient electrocatalytic conversion of carbon dioxide in a low-resistance pressurized alkaline electrolyzer. Appl. Energy 261, 114305 (2020).

    Article  CAS  Google Scholar 

  48. Masel, R. I., Chen, Q., Liu, Z. & Kutz, R. Catalyst layers and electrolyzers. US patent 9,481,939 (2018).

  49. Masel, R. I., Liu, Z., Kutz, R. & Sajjad, S. D. Catalyst layers and electrolyzers. US patent 9,945,040 (2018).

  50. Higgins, D., Hahn, C., Xiang, C., Jaramillo, T. F. & Weber, A. Z. Gas-diffusion electrodes for carbon dioxide reduction: a new paradigm. ACS Energy Lett. 4, 317–324 (2019).

    Article  CAS  Google Scholar 

  51. Endrődi, B. et al. Multilayer electrolyzer stack converts carbon dioxide to gas products at high pressure with high efficiency. ACS Energy Lett. 4, 1770–1777 (2019).

    Article  Google Scholar 

  52. Liu, Z. et al. Electrochemical generation of syngas from water and carbon dioxide at industrially important rates. J. CO2 Util. 15, 50–56 (2016).

  53. Ma, C. et al. Carbon nanotubes with rich pyridinic nitrogen for gas phase CO2 electroreduction. Appl. Catal. B 250, 347–354 (2019).

    Article  CAS  Google Scholar 

  54. Kutz, R. B. et al. Sustainion imidazolium-functionalized polymers for carbon dioxide electrolysis. Energy Technol. 5, 929–936 (2017).

    Article  CAS  Google Scholar 

  55. Masel, R. I., Chen, Q. & Liu, Z. Ion-conducting membranes. US patent 9,849,450 (2017).

  56. Masel, R. I., Chen, Q., Liu, Z. & Kutz, R. Ion-conducting membranes. US patent 9,370,773 (2016).

  57. Landes, H., Sanchis, E. M. F. & Hanebuth, M. Method and device for the electrochemical utilization of carbon dioxide. European patent application EP3414363A1 (2018).

  58. Krause, R., Neubauer, S., Reller, C., Schmid, B. & Schmid, G. CO2 electrolysis method. Patent Cooperation Treaty application WO2018050419A1 (2018); https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2018050419

  59. Verma, S., Lu, X., Kenis, P. J. A., Ma, S. & Masel, R. I. The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes. Phys. Chem. Chem. Phys. 18, 7075–7084 (2016).

    Article  CAS  Google Scholar 

  60. Salehi-Khojin, A. et al. Nanoparticle silver catalysts that show enhanced activity for carbon dioxide electrolysis. J. Phys. Chem. C 117, 1627–1632 (2013).

    Article  CAS  Google Scholar 

  61. Masel, R. I. & Salehi-Khojin, A. Catalysts for electrochemical conversion of carbon dioxide. US patent 9,012,345 (2015).

  62. Kim, C. et al. Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. J. Am. Chem. Soc. 137, 13844–13850 (2015).

    Article  CAS  Google Scholar 

  63. Zhang, L., Zhao, Z.-J. & Gong, J. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew. Chem. Int. Ed. 56, 11326–11353 (2017).

    Article  CAS  Google Scholar 

  64. Zhu, W. et al. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 135, 16833–16836 (2013).

    Article  CAS  Google Scholar 

  65. Cho, M. et al. Versatile, transferable 3-dimensionally nanofabricated Au catalysts with high-index crystal planes for highly efficient and robust electrochemical CO2 reduction. J. Mater. Chem. A 7, 6045–6052 (2019).

    Article  CAS  Google Scholar 

  66. Mistry, H. et al. Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J. Am. Chem. Soc. 136, 16473–16476 (2014).

    Article  CAS  Google Scholar 

  67. Weekes, D. M., Salvatore, D. A., Reyes, A., Huang, A. & Berlinguette, C. P. Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 51, 910–918 (2018).

    Article  CAS  Google Scholar 

  68. Mahyoub, S. A. et al. An overview on the recent developments of Ag-based electrodes in the electrochemical reduction of CO2 to CO. Sustain. Energy Fuels 4, 50–67 (2019).

    Article  Google Scholar 

  69. Sun, D. et al. Rational design of Ag-based catalysts for the electrochemical CO2 reduction to CO: a review. ChemSusChem 13, 39–58 (2020).

    Article  CAS  Google Scholar 

  70. Rudnev, A. V. et al. Enhanced electrocatalytic CO formation from CO2 on nanostructured silver foam electrodes in ionic liquid/water mixtures. Electrochim. Acta 306, 245–253 (2019).

    Article  CAS  Google Scholar 

  71. Liu, S.-Q. et al. Hollow porous Ag spherical catalysts for highly efficient and selective electrocatalytic reduction of CO2 to CO. ACS Sustain. Chem. Eng. 7, 14443–14450 (2019).

    Article  CAS  Google Scholar 

  72. Kottakkat, T. et al. Electrodeposited AgCu foam catalysts for enhanced reduction of CO2 to CO. ACS Appl. Mater. Interfaces 11, 14734–14744 (2019).

    Article  CAS  Google Scholar 

  73. Wang, Y., Niu, C. & Zhu, Y. Copper–silver bimetallic nanowire arrays for electrochemical reduction of carbon dioxide. Nanomaterials 9, 173 (2019).

    Article  CAS  Google Scholar 

  74. Lee, S., Park, G. & Lee, J. Importance of Ag–Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol. ACS Catal. 7, 8594–8604 (2017).

    Article  CAS  Google Scholar 

  75. Hoang, T. T. H. et al. Nanoporous copper–silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 140, 5791–5797 (2018).

    Article  CAS  Google Scholar 

  76. Hjorth, I., Nord, M., Roenning, M., Yang, J. & Chen, D. Electrochemical reduction of CO2 to synthesis gas on CNT supported CuxZn1−xO catalysts. Catal. Today https://doi.org/10.1016/j.cattod.2019.02.045 (2019).

  77. Lin, R. et al. PdAg bimetallic electrocatalyst for highly selective reduction of CO2 with low COOH* formation energy and facile CO desorption. Nano Res. 12, 2866–2871 (2019).

    Article  CAS  Google Scholar 

  78. Zeng, J. et al. Pd–Ag alloy electrocatalysts for CO2 reduction: composition tuning to break the scaling relationship. ACS Appl. Mater. Interfaces 11, 33074–33081 (2019).

    Article  CAS  Google Scholar 

  79. Larrazabal, G. O., Martin, A. J., Mitchell, S., Hauert, R. & Perez-Ramirez, J. Synergistic effects in silver–indium electrocatalysts for carbon dioxide reduction. J. Catal. 343, 266–277 (2016).

    Article  CAS  Google Scholar 

  80. Park, H. et al. AgIn dendrite catalysts for electrochemical reduction of CO2 to CO. Appl. Catal. B 219, 123–131 (2017).

    Article  CAS  Google Scholar 

  81. Abeyweera, S. C., Yu, J., Perdew, J. P., Yan, Q. & Sun, Y. Hierarchically 3D porous Ag nanostructures derived from silver benzenethiolate nanoboxes: enabling CO2 reduction with a near-unity selectivity and mass-specific current density over 500 A/g. Nano Lett. 20, 2806–2811 (2020).

    Article  CAS  Google Scholar 

  82. Lee, W. H. et al. Highly selective and scalable CO2 to CO—electrolysis using coral-nanostructured Ag catalysts in zero-gap configuration. Nano Energy https://doi.org/10.1016/j.nanoen.2020.105030 (2020).

  83. Jhong, H.-R. M. et al. Gold nanoparticles on polymer-wrapped carbon nanotubes: an efficient and selective catalyst for the electroreduction of CO2. ChemPhysChem 18, 3274–3279 (2017).

    Article  CAS  Google Scholar 

  84. Verma, S. et al. Insights into the low overpotential electroreduction of CO2 to CO on a supported gold catalyst in an alkaline flow electrolyzer. ACS Energy Lett. 3, 193–198 (2018).

    Article  CAS  Google Scholar 

  85. Jin, L. et al. Ultrasmall Au nanocatalysts supported on nitrided carbon for electrocatalytic CO2 reduction: the role of the carbon support in high selectivity. Nanoscale 10, 14678–14686 (2018).

    Article  CAS  Google Scholar 

  86. Hong, S., Lee, S., Kim, S., Lee, J. K. & Lee, J. Anion dependent CO/H2 production ratio from CO2 reduction on Au electrocatalyst. Catal. Today 295, 82–88 (2017).

    Article  CAS  Google Scholar 

  87. Goyal, A., Marcandalli, G., Mints, V. A. & Koper, M. T. M. Competition between CO2 reduction and hydrogen evolution on a gold electrode under well-defined mass transport conditions. J. Am. Chem. Soc. 142, 4154–4161 (2020).

    Article  CAS  Google Scholar 

  88. Zhang, B. A., Ozel, T., Elias, J. S., Costentin, C. & Nocera, D. G. Interplay of homogeneous reactions, mass transport, and kinetics in determining selectivity of the reduction of CO2 on gold electrodes. ACS Cent. Sci. 5, 1097–1105 (2019).

    Article  CAS  Google Scholar 

  89. Yin, Z. et al. An alkaline polymer electrolyte CO2 electrolyzer operated with pure water. Energy Environ. Sci. 12, 2455–2462 (2019).

    Article  CAS  Google Scholar 

  90. Zhu, W. et al. Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J. Am. Chem. Soc. 136, 16132–16135 (2014).

    Article  CAS  Google Scholar 

  91. Wen, X. et al. A reassembled nanoporous gold leaf electrocatalyst for efficient CO2 reduction towards CO. Inorg. Chem. Front. 5, 1207–1212 (2018).

    Article  CAS  Google Scholar 

  92. Chen, Y., Li, C. W. & Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 134, 19969–19972 (2012).

    Article  CAS  Google Scholar 

  93. Ismail, A. M., Csapo, E. & Janaky, C. Correlation between the work function of Au–Ag nanoalloys and their electrocatalytic activity in carbon dioxide reduction. Electrochim. Acta 313, 171–178 (2019).

    Article  CAS  Google Scholar 

  94. Wu, N., Xiao, L. & Zhuang, L. Theoretical search for novel Au or Ag bimetallic alloys capable of transforming CO2 into hydrocarbons. J. Mater. Chem. A 7, 20567–20573 (2019).

    Article  CAS  Google Scholar 

  95. Xiang, H. et al. Copper–indium binary catalyst on a gas diffusion electrode for high-performance CO2 electrochemical reduction with record CO production efficiency. ACS Appl. Mater. Interfaces 21, 601–608 (2020).

    Article  Google Scholar 

  96. Chen, D. et al. Tailoring the selectivity of bimetallic copper–palladium nanoalloys for electrocatalytic reduction of CO2 to CO. ACS Appl. Energy Mater. 1, 883–890 (2018).

    Article  CAS  Google Scholar 

  97. Francke, R., Schille, B. & Roemelt, M. Homogeneously catalyzed electroreduction of carbon dioxide—methods, mechanisms, and catalysts. Chem. Rev. 118, 4631–4701 (2018).

    Article  CAS  Google Scholar 

  98. Torbensen, K. et al. Molecular catalysts boost the rate of electrolytic CO2 reduction. ACS Energy Lett. 5, 1512–1518 (2020).

    Article  CAS  Google Scholar 

  99. Corbin, N., Zeng, J., Williams, K. & Manthiram, K. Heterogeneous molecular catalysts for electrocatalytic CO2 reduction. Nano Res. 12, 2093–2125 (2019).

    Article  CAS  Google Scholar 

  100. Sun, L., Reddu, V., Fisher, A. C. & Wang, X. Electrocatalytic reduction of carbon dioxide: opportunities with heterogeneous molecular catalysts. Energy Environ. Sci. 13, 374–403 (2020).

    Article  CAS  Google Scholar 

  101. Choi, J. et al. Steric modification of a cobalt phthalocyanine/graphene catalyst to give enhanced and stable electrochemical CO2 reduction to CO. ACS Energy Lett. 4, 666–672 (2019).

    Article  CAS  Google Scholar 

  102. Chen, J. et al. Facile synthesis of polymerized cobalt phthalocyanines for highly efficient CO2 reduction. Green. Chem. 21, 6056–6061 (2019).

    Article  CAS  Google Scholar 

  103. Rotundo, L. et al. Electrochemical CO2 reduction in water at carbon cloth electrodes functionalized with a fac-Mn(apbpy)(CO)3Br complex. Chem. Commun. 55, 775–777 (2019).

    Article  CAS  Google Scholar 

  104. Hu, X.-M., Rønne, M. H., Pedersen, S. U., Skrydstrup, T. & Daasbjerg, K. Enhanced catalytic activity of cobalt porphyrin in CO2 electroreduction upon immobilization on carbon materials. Angew. Chem. Int. Ed. 56, 6468–6472 (2017).

    Article  CAS  Google Scholar 

  105. He, L., Sun, X., Zhang, H. & Shao, F. G-quadruplex nanowires to direct the efficiency and selectivity of electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 57, 12453–12457 (2018).

    Article  CAS  Google Scholar 

  106. Lieber, C. M. & Lewis, N. S. Catalytic reduction of carbon dioxide at carbon electrodes modified with cobalt phthalocyanine. J. Am. Chem. Soc. 106, 5033–5034 (1984).

    Article  CAS  Google Scholar 

  107. Zhang, X. et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 8, 14675 (2017).

    Article  Google Scholar 

  108. Kramer, W. W. & McCrory, C. C. L. Polymer coordination promotes selective CO2 reduction by cobalt phthalocyanine. Chem. Sci. 7, 2506–2515 (2016).

    Article  CAS  Google Scholar 

  109. Liu, Y. & McCrory, C. C. L. Modulating the mechanism of electrocatalytic CO2 reduction by cobalt phthalocyanine through polymer coordination and encapsulation. Nat. Commun. 10, 1683 (2019).

    Article  Google Scholar 

  110. Diercks, C. S., Liu, Y., Cordova, K. E. & Yaghi, O. M. The role of reticular chemistry in the design of CO2 reduction catalysts. Nat. Mater. 17, 301–307 (2018).

    Article  CAS  Google Scholar 

  111. Jiao, L., Wang, Y., Jiang, H.-L. & Xu, Q. Metal–organic frameworks as platforms for catalytic applications. Adv. Mater. 30, 1703663 (2018).

    Article  Google Scholar 

  112. Matheu, R. et al. Three-dimensional phthalocyanine metal-catecholates for high electrochemical carbon dioxide reduction. J. Am. Chem. Soc. 141, 17081–17085 (2019).

    Article  CAS  Google Scholar 

  113. Lin, S. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015).

    Article  CAS  Google Scholar 

  114. Diercks, C. S. et al. Reticular electronic tuning of porphyrin active sites in covalent organic frameworks for electrocatalytic carbon dioxide reduction. J. Am. Chem. Soc. 140, 1116–1122 (2018).

    Article  CAS  Google Scholar 

  115. Wu, Q. et al. Integration of strong electron transporter tetrathiafulvalene into metalloporphyrin-based covalent organic framework for highly efficient electroreduction of CO2. ACS Energy Lett. 5, 1005–1012 (2020).

    Article  CAS  Google Scholar 

  116. Marianov, A. N. & Jiang, Y. Covalent ligation of Co molecular catalyst to carbon cloth for efficient electroreduction of CO2 in water. Appl. Catal. B 244, 881–888 (2019).

    Article  CAS  Google Scholar 

  117. Zhu, M. et al. Covalently grafting cobalt porphyrin onto carbon nanotubes for efficient CO2 electroreduction. Angew. Chem. Int. Ed. 58, 6595–6599 (2019).

    Article  CAS  Google Scholar 

  118. Orchanian, N. M., Hong, L. E. & Marinescu, S. C. Immobilized molecular wires on carbon-cloth electrodes facilitate CO2 electrolysis.ACS Catal. 9, 9393–9397 (2019).

    Article  CAS  Google Scholar 

  119. Willkomm, J. et al. Grafting of a molecular rhenium CO2 reduction catalyst onto colloid-imprinted carbon. ACS Appl. Energy Mater. 2, 2414–2418 (2019).

    Article  CAS  Google Scholar 

  120. Oh, S., Gallagher, J. R., Miller, J. T. & Surendranath, Y. Graphite-conjugated rhenium catalysts for carbon dioxide reduction. J. Am. Chem. Soc. 138, 1820–1823 (2016).

    Article  CAS  Google Scholar 

  121. Jackson, M. N. & Surendranath, Y. Molecular control of heterogeneous electrocatalysis through graphite conjugation. Acc. Chem. Res. 52, 3432–3441 (2019).

    Article  CAS  Google Scholar 

  122. Ren, S. et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 365, 367–369 (2019).

    Article  CAS  Google Scholar 

  123. Lu, X. et al. High-performance electrochemical CO2 reduction cells based on non-noble metal catalysts. ACS Energy Lett. 3, 2527–2532 (2018).

    Article  CAS  Google Scholar 

  124. Wang, M. et al. CO2 electrochemical catalytic reduction with a highly active cobalt phthalocyanine. Nat. Commun. 10, 3602 (2019).

    Article  Google Scholar 

  125. Weekes, D. M., Salvatore, D. A., Reyes, A., Huang, A. & Berlinguette, C. P. Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 51, 910–918 (2018).

    Article  CAS  Google Scholar 

  126. Jeong, H.-Y. et al. Achieving highly efficient CO2 to CO electroreduction exceeding 300 mA cm−2 with single-atom nickel electrocatalysts. J. Mater. Chem. A 7, 10651–10661 (2019).

    Article  CAS  Google Scholar 

  127. Möller, T. et al. Efficient CO2 to CO electrolysis on solid Ni–N–C catalysts at industrial current densities. Energy Environ. Sci. 12, 640–647 (2019).

    Article  Google Scholar 

  128. Yang, H. et al. Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities. Nat. Commun. 11, 593 (2020).

    Article  CAS  Google Scholar 

  129. Lin, L. et al. Synergistic catalysis over iron–nitrogen sites anchored with cobalt phthalocyanine for efficient CO2 electroreduction. Adv. Mater. 31, 1903470 (2019).

    Article  CAS  Google Scholar 

  130. Herranz, J., Patru, A., Fabbri, E. & Schmidt, T. J. Co-electrolysis of CO2 and H2O: from electrode reactions to cell-level development. Curr. Opin. Electrochem. https://doi.org/10.1016/j.coelec.2020.05.004 (2020).

  131. Ghoshal, S. et al. ZIF 67 based highly active electrocatalysts as oxygen electrodes in water electrolyzer. ACS Appl. Energy Mater. 2, 5568–5576 (2019).

    Article  CAS  Google Scholar 

  132. Li, T. et al. Electrolytic conversion of bicarbonate into CO in a flow cell. Joule 3, 1487–1497 (2019).

    Article  CAS  Google Scholar 

  133. Medina-Ramos, J. et al. Cathodic corrosion at the bismuth–ionic liquid electrolyte interface under conditions for CO2 reduction. Chem. Mater. 30, 2362–2373 (2018).

    Article  CAS  Google Scholar 

  134. Avila-Bolivar, B., Garcia-Cruz, L., Montiel, V. & Solla-Gullon, J. Electrochemical reduction of CO2 to formate on easily prepared carbon-supported Bi nanoparticles. Molecules 24, 2032 (2019).

    Article  CAS  Google Scholar 

  135. Lv, W., Zhang, R., Gao, P. & Lei, L. Studies on the Faradaic efficiency for electrochemical reduction of carbon dioxide to formate on tin electrode. J. Power Sources 253, 276–281 (2014).

    Article  CAS  Google Scholar 

  136. Zhai, Y., Gui, F., Guan, S., Sridhar, N. & Agarwal, A. S. Method and apparatus for the electrochemical reduction of carbon dioxide. US patent 9,145,615 (2015).

  137. Zhai, Y., Guan, S., Sridhar, N. & Agarwal, A. S. Electrochemical process. US patent 10,253,420 (2019).

  138. Agarwal, A. S., Rode, E. J. & Gautam, D. Electrochemical electrode comprising tin-based catalyst, method of making, and method of use. US patent 10,273,587 (2019).

  139. He, S. et al. The p-orbital delocalization of main-group metals to boost CO2 electroreduction. Angew. Chem. Int. Ed. 57, 16114–16119 (2018).

    Article  CAS  Google Scholar 

  140. Garcia de Arquer, F. P. et al. 2D metal oxyhalide-derived catalysts for efficient CO2 electroreduction. Adv. Mater. 30, 1802858 (2018).

    Article  Google Scholar 

  141. Liu, P. F., Zu, M. Y., Zheng, L. R. & Yang, H. G. Bismuth oxyiodide microflower-derived catalysts for efficient CO2 electroreduction in a wide negative potential region. Chem. Commun. 55, 12392–12395 (2019).

    Article  CAS  Google Scholar 

  142. Guo, S.-X. et al. Phosphomolybdic acid-assisted growth of ultrathin bismuth nanosheets for enhanced electrocatalytic reduction of CO2 to formate. ChemSusChem 12, 1091–1100 (2019).

    Article  CAS  Google Scholar 

  143. Li, L., Ma, D.-K., Qi, F., Chen, W. & Huang, S. Bi nanoparticles/Bi2O3 nanosheets with abundant grain boundaries for efficient electrocatalytic CO2 reduction. Electrochim. Acta 298, 580–586 (2019).

    Article  CAS  Google Scholar 

  144. Lv, W. et al. Bi2O2CO3 nanosheets as electrocatalysts for selective reduction of CO2 to formate at low overpotential. ACS Omega 2, 2561–2567 (2017).

    Article  CAS  Google Scholar 

  145. Meng, F.-L., Zhang, Q., Liu, K.-H. & Zhang, X.-B. Integrated bismuth oxide ultrathin nanosheets/carbon foam electrode for highly selective and energy-efficient electrocatalytic conversion of CO2 to HCOOH. Chemistry https://doi.org/10.1002/chem.201903158 (2019).

  146. Su, P. et al. Ultrathin bismuth nanosheets as a highly efficient CO2 reduction electrocatalyst. ChemSusChem 11, 848–853 (2018).

    Article  CAS  Google Scholar 

  147. Wang, Q., Zhu, C., Wu, C. & Yu, H. Direct synthesis of bismuth nanosheets on a gas diffusion layer as a high-performance cathode for a coupled electrochemical system capable of electroreduction of CO2 to formate with simultaneous degradation of organic pollutants. Electrochim. Acta 319, 138–147 (2019).

    Article  CAS  Google Scholar 

  148. Wu, D. et al. Electrochemical transformation of facet-controlled BiOI into mesoporous bismuth nanosheets for selective electrocatalytic reduction of CO2 to formic acid. ChemSusChem 12, 4700–4707 (2019).

    Article  CAS  Google Scholar 

  149. Yang, H. et al. Selective CO2 reduction on 2D mesoporous Bi nanosheets. Adv. Energy Mater. 8, 1801536 (2018).

    Article  Google Scholar 

  150. Zhang, X., Sun, X., Guo, S.-X., Bond, A. M. & Zhang, J. Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO2 reduction at low overpotential. Energy Environ. Sci. 12, 1334–1340 (2019).

    Article  CAS  Google Scholar 

  151. Fan, K. et al. Curved surface boosts electrochemical CO2 reduction to formate via bismuth nanotubes in a wide potential window. ACS Catal. 10, 358–364 (2020).

    Article  CAS  Google Scholar 

  152. Kunene, T., Atifi, A. & Rosenthal, J. Selective CO2 reduction over Rose’s metal in the presence of an imidazolium ionic liquid electrolyte. ACS Appl. Energy Mater. https://doi.org/10.1021/acsaem.9b01995 (2019).

  153. Chu, M. et al. Enhancing electroreduction of CO2 over Bi2WO6 nanosheets by oxygen vacancies. Green. Chem. 21, 2589–2593 (2019).

    Article  CAS  Google Scholar 

  154. Daiyan, R. et al. Modulating activity through defect engineering of tin oxides for electrochemical CO2 reduction. Adv. Sci. 6, 1900678 (2019).

    Article  CAS  Google Scholar 

  155. Gu, J., Heroguel, F., Luterbacher, J. & Hu, X. Densely packed, ultra small SnO nanoparticles for enhanced activity and selectivity in electrochemical CO2 reduction. Angew. Chem. Int. Ed. 57, 2943–2947 (2018).

    Article  CAS  Google Scholar 

  156. Lei, T. et al. Continuous electroreduction of carbon dioxide to formate on tin nanoelectrode using alkaline membrane cell configuration in aqueous medium. Catal. Today 318, 32–38 (2018).

    Article  CAS  Google Scholar 

  157. Del Castillo, A., Alvarez-Guerra, M. & Irabien, A. Continuous electroreduction of CO2 to formate using Sn gas diffusion electrodes. AIChE J. 60, 3557–3564 (2014).

    Article  Google Scholar 

  158. Prakash, G. K. S., Viva, F. A. & Olah, G. A. Electrochemical reduction of CO2 over Sn-Nafion® coated electrode for a fuel-cell-like device. J. Power Sources 223, 68–73 (2013).

    Article  CAS  Google Scholar 

  159. Fan, L., Xia, Z., Xu, M., Lu, Y. & Li, Z. 1D SnO2 with wire-in-tube architectures for highly selective electrochemical reduction of CO2 to C1 products. Adv. Funct. Mater. 28, 1706289 (2018).

    Article  Google Scholar 

  160. Li, F., Chen, L., Knowles, G. P., MacFarlane, D. R. & Zhang, J. Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. Angew. Chem. Int. Ed. 56, 505–509 (2017).

    Article  CAS  Google Scholar 

  161. Li, H. et al. Promoting the electroreduction of CO2 with oxygen vacancies on a plasma-activated SnOx/carbon foam monolithic electrode. J. Mater. Chem. A 8, 1779–1786 (2020).

    Article  CAS  Google Scholar 

  162. Zheng, X. et al. Theory-guided Sn/Cu alloying for efficient CO2 electroreduction at low overpotentials. Nat. Catal. 2, 55–61 (2019).

    Article  CAS  Google Scholar 

  163. Zhang, J., Yin, R., Shao, Q., Zhu, T. & Huang, X. Oxygen vacancies in amorphous InOx nanoribbons enhance CO2 adsorption and activation for CO2 electroreduction. Angew. Chem. Int. Ed. 58, 5609–5613 (2019).

    Article  CAS  Google Scholar 

  164. Hwang, E., Park, H., Kim, H., Ahn, S. H. & Kim, S.-K. Electrochemically fabricated Pd–In catalysts for carbon dioxide–formate/formic acid inter-conversion. Bull. Korean Chem. Soc. 38, 607–613 (2017).

    Article  CAS  Google Scholar 

  165. Liu, L. et al. Morphology modulation-engineered flowerlike In2S3 via ionothermal method for efficient CO2 electroreduction. ChemCatChem https://doi.org/10.1002/cctc.201901530 (2019).

  166. Xia, Z. et al. Highly selective electrochemical conversion of CO2 to HCOOH on dendritic indium foams. ChemElectroChem 5, 253–259 (2018).

    Article  CAS  Google Scholar 

  167. Ghosh, S., Garapati, M. S., Ghosh, A. & Sundara, R. Nonprecious catalyst for three-phase contact in a proton exchange membrane CO2 conversion full cell for efficient electrochemical reduction of carbon dioxide. ACS Appl. Mater. Interfaces 11, 40432–40442 (2019).

    Article  CAS  Google Scholar 

  168. Sekar, P. et al. Cobalt spinel nanocubes on n-doped graphene: a synergistic hybrid electrocatalyst for the highly selective reduction of carbon dioxide to formic acid. ACS Catal. 7, 7695–7703 (2017).

    Article  CAS  Google Scholar 

  169. Kang, P., Zhang, S., Meyer, T. J. & Brookhart, M. Rapid selective electrocatalytic reduction of carbon dioxide to formate by an iridium pincer catalyst immobilized on carbon nanotube electrodes. Angew. Chem. Int. Ed. 53, 8709–8713 (2014).

    Article  CAS  Google Scholar 

  170. Chen, L. et al. Molecular catalysis of the electrochemical and photochemical reduction of CO2 with earth-abundant metal complexes. Selective production of CO vs HCOOH by switching of the metal center. J. Am. Chem. Soc. 137, 10918–10921 (2015).

    Article  CAS  Google Scholar 

  171. Taheri, A., Thompson, E. J., Fettinger, J. C. & Berben, L. A. An iron electrocatalyst for selective reduction of CO2 to formate in water: including thermochemical insights. ACS Catal. 5, 7140–7151 (2015).

    Article  CAS  Google Scholar 

  172. Birdja, Y. Y., Shen, J. & Koper, M. T. M. Influence of the metal center of metalloprotoporphyrins on the electrocatalytic CO2 reduction to formic acid. Catal. Today 288, 37–47 (2017).

    Article  CAS  Google Scholar 

  173. Birdja, Y. Y. et al. Effects of substrate and polymer encapsulation on CO2 electroreduction by immobilized indium(iii) protoporphyrin. ACS Catal. 8, 4420–4428 (2018).

    Article  CAS  Google Scholar 

  174. Wu, J.-X. et al. Cathodized copper porphyrin metal–organic framework nanosheets for selective formate and acetate production from CO2 electroreduction. Chem. Sci. 10, 2199–2205 (2019).

    Article  CAS  Google Scholar 

  175. Zu, X. et al. Efficient and robust carbon dioxide electroreduction enabled by atomically dispersed Snδ+ sites. Adv. Mater. 31, 1808135 (2019).

    Article  Google Scholar 

  176. Gao, J., Ren, D., Guo, X., Zakeeruddin, S. M. & Gratzel, M. Sequential catalysis enables enhanced C–C coupling towards multi-carbon alkenes and alcohols in carbon dioxide reduction: a study on bifunctional Cu/Au electrocatalysts. Faraday Discuss. 215, 282–296 (2019).

    Article  CAS  Google Scholar 

  177. Morales-Guio, C. G. et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 1, 764–771 (2018).

    Article  CAS  Google Scholar 

  178. Hori, Y., Takahashi, R., Yoshinami, Y. & Murata, A. Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B 101, 7075–7081 (1997).

    Article  CAS  Google Scholar 

  179. Hori, Y., Takahashi, I., Koga, O. & Hoshi, N. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J. Phys. Chem. B 106, 15–17 (2002).

    Article  CAS  Google Scholar 

  180. Lee, S. & Lee, J. Ethylene selectivity in CO electroreduction when using Cu oxides: an in situ ATR-SEIRAS study. ChemElectroChem 5, 558–564 (2018).

    Article  CAS  Google Scholar 

  181. Chen, R. et al. Highly selective production of ethylene by the electroreduction of carbon monoxide. Angew. Chem. Int. Ed. 59, 154–160 (2020).

    Article  CAS  Google Scholar 

  182. Feng, X., Jiang, K., Fan, S. & Kanan, M. W. A direct grain-boundary–activity correlation for CO electroreduction on Cu nanoparticles. ACS Cent. Sci. 2, 169–174 (2016).

    Article  CAS  Google Scholar 

  183. Luc, W. et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nat. Catal. 2, 423–430 (2019).

    Article  CAS  Google Scholar 

  184. Gong, M. et al. Supramolecular porphyrin cages assembled at molecular-materials interfaces for electrocatalytic CO reduction. ACS Cent. Sci. 3, 1032–1040 (2017).

    Article  CAS  Google Scholar 

  185. Jouny, M., Luc, W. & Jiao, F. High-rate electroreduction of carbon monoxide to multi-carbon products. Nat. Catal. 1, 748–755 (2018).

    Article  CAS  Google Scholar 

  186. Li, J. et al. Copper adparticle enabled selective electrosynthesis of n-propanol. Nat. Commun. 9, 4614 (2018).

  187. Lum, Y. & Ager, J. W. Sequential catalysis controls selectivity in electrochemical CO2 reduction on Cu. Energy Environ. Sci. 11, 2935–2944 (2018).

    Article  CAS  Google Scholar 

  188. Wang, X. et al. Efficient upgrading of CO to C3 fuel using asymmetric C–C coupling active sites. Nat. Commun. 10, 5186 (2019).

  189. Wang, L. et al. Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area. Nat. Catal. 2, 702–708 (2019).

    Article  CAS  Google Scholar 

  190. Wang, L. et al. Electrochemical carbon monoxide reduction on polycrystalline copper: effects of potential, pressure, and pH on selectivity toward multicarbon and oxygenated products. ACS Catal. 8, 7445–7454 (2018).

    Article  CAS  Google Scholar 

  191. Bertheussen, E. et al. Electroreduction of CO on polycrystalline copper at low overpotentials. ACS Energy Lett. 3, 634–640 (2018).

    Article  CAS  Google Scholar 

  192. Han, L., Zhou, W. & Xiang, C. High-rate electrochemical reduction of carbon monoxide to ethylene using Cu-nanoparticle-based gas diffusion electrodes. ACS Energy Lett. 3, 855–860 (2018).

    Article  CAS  Google Scholar 

  193. Wang, Y., Raciti, D. & Wang, C. High-flux CO reduction enabled by three-dimensional nanostructured copper electrodes. ACS Catal. 8, 5657–5663 (2018).

    Article  CAS  Google Scholar 

  194. Jung, H. et al. Electrochemical fragmentation of Cu2O nanoparticles enhancing selective C–C coupling from CO2 reduction reaction. J. Am. Chem. Soc. 141, 4624–4633 (2019).

    Article  CAS  Google Scholar 

  195. Grosse, P. et al. Dynamic changes in the structure, chemical state and catalytic selectivity of Cu nanocubes during CO2 electroreduction: size and support effects. Angew. Chem. Int. Ed. 57, 6192–6197 (2018).

    Article  CAS  Google Scholar 

  196. Kibria, M. G. et al. A surface reconstruction route to high productivity and selectivity in CO2 electroreduction toward C2+ hydrocarbons. Adv. Mater. 30, 1804867 (2018).

    Article  Google Scholar 

  197. Suen, N.-T. et al. Morphology manipulation of copper nanocrystals and product selectivity in the electrocatalytic reduction of carbon dioxide. ACS Catal. 9, 5217–5222 (2019).

    Article  CAS  Google Scholar 

  198. Fu, J. et al. Bipyridine-assisted assembly of Au nanoparticles on Cu nanowires to enhance the electrochemical reduction of CO2. Angew. Chem. Int. Ed. 58, 14100–14103 (2019).

    Article  CAS  Google Scholar 

  199. Wei, X. et al. Highly selective reduction of CO2 to C2+ hydrocarbons at copper/polyaniline interfaces. ACS Catal. 10, 4103–4111 (2020).

    Article  CAS  Google Scholar 

  200. Jiao, Y., Zheng, Y., Chen, P., Jaroniec, M. & Qiao, S.-Z. Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO2 reduction to hydrocarbon/alcohol. J. Am. Chem. Soc. 139, 18093–18100 (2017).

    Article  CAS  Google Scholar 

  201. Fan, L. et al. Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci. Adv. 6, eaay3111 (2020).

    Article  CAS  Google Scholar 

  202. Yano, H., Shirai, F., Nakayama, M. & Ogura, K. Efficient electrochemical conversion of CO2 to CO, C2H4 and CH4 at a three-phase interface on a Cu net electrode in acidic solution. J. Electroanalytical Chem. 519, 93–100 (2002).

    Article  CAS  Google Scholar 

  203. Yano, H., Tanaka, T., Nakayama, M. & Ogura, K. Selective electrochemical reduction of CO2 to ethylene at a three-phase interface on copper(i) halide-confined Cu-mesh electrodes in acidic solutions of potassium halides. J. Electroanalytical Chem. 565, 287–293 (2004).

    Article  CAS  Google Scholar 

  204. Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012).

    Article  CAS  Google Scholar 

  205. Zhao, J. et al. An overview of Cu-based heterogeneous electrocatalysts for CO2 reduction. J. Mater. Chem. A 8, 4700–4734 (2020).

    Article  CAS  Google Scholar 

  206. De Gregorio, G. L. et al. Facet-dependent selectivity of Cu catalysts in electrochemical CO2 reduction at commercially viable current densities. ACS Catal. 10, 4854–4862 (2020).

    Article  Google Scholar 

  207. Masel, R. I. et al. in Commercializing Biobased Products: Opportunities, Challenges, Benefits, and Risks (ed. Snyder, S. W.) 215–257 (Royal Society of Chemistry, 2016).

  208. Kim, J. et al. Branched copper oxide nanoparticles induce highly selective ethylene production by electrochemical carbon dioxide reduction. J. Am. Chem. Soc. 141, 6986–6994 (2019).

    Article  CAS  Google Scholar 

  209. Hoang, T. T. H. et al. Nanoporous copper–silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 140, 5791–5797 (2018).

    Article  CAS  Google Scholar 

  210. Speck, F. D. & Cherevko, S. Electrochemical copper dissolution: a benchmark for stable CO2 reduction on copper electrocatalysts. Electrochem. Commun. 115, 106739, (2020).

    Article  CAS  Google Scholar 

  211. Dou, S. et al. Boosting electrochemical CO2 reduction on metal–organic frameworks via ligand doping. Angew. Chem. Int. Ed. 58, 4041–4045 (2019).

    Article  CAS  Google Scholar 

  212. Masel, R. I. Novel catalyst mixtures. US patent 8,956,990 (2014).

  213. Glueer, A. & Schneider, S. Iron catalyzed hydrogenation and electrochemical reduction of CO2: the role of functional ligands. J. Organomet. Chem. 861, 159–173 (2018).

    Article  CAS  Google Scholar 

  214. Jiang, X. et al. Carbon dioxide electroreduction over imidazolate ligands coordinated with Zn(ii) center in ZIFs. Nano Energy 52, 345–350 (2018).

    Article  CAS  Google Scholar 

  215. Kim, C. et al. Insight into electrochemical CO2 reduction on surface-molecule-mediated Ag nanoparticles. ACS Catal. 7, 779–785 (2017).

    Article  CAS  Google Scholar 

  216. Lau, G. P. S. et al. New insights into the role of imidazolium-based promoters for the electroreduction of CO2 on a silver electrode. J. Am. Chem. Soc. 138, 7820–7823 (2016).

    Article  CAS  Google Scholar 

  217. Wang, Z. et al. Surface ligand promotion of carbon dioxide reduction through stabilizing chemisorbed reactive intermediates. J. Phys. Chem. Lett. 9, 3057–3061 (2018).

    Article  CAS  Google Scholar 

  218. Rosen, B. A. et al. Ionic liquid mediated selective conversion of CO2 to CO at low overpotentials. Science 334, 643–644 (2011).

    Article  CAS  Google Scholar 

  219. Rosen, B. A., Zhu, W., Kaul, G., Salehi-Khojin, A. & Masel, R. I. Water enhancement of CO2 conversion on silver in 1-ethyl-3-methylimidazolium tetrafluoroborate. J. Electrochem. Soc. 160, H138–H141 (2013).

    Article  CAS  Google Scholar 

  220. Zhuang, T.-T. et al. Dopant-tuned stabilization of intermediates promotes electrosynthesis of valuable C3 products. Nat. Commun. 10, 4807 (2019).

  221. Lee, W. H. et al. in Studies in Surface Science and Catalysis Vol. 68 (eds Bartholomew, C. H. & Butt, J. B.) 597–603 (Elsevier, 1991).

  222. Gao, D. et al. Selective CO2 electroreduction to ethylene and multicarbon alcohols via electrolyte-driven nanostructuring. Angew. Chem. Int. Ed. 58, 17047–17053 (2019).

    Article  CAS  Google Scholar 

  223. Han, Z., Kortlever, R., Chen, H.-Y., Peters, J. C. & Agapie, T. CO2 reduction selective for C ≥ 2 products on polycrystalline copper with N-substituted pyridinium additives. ACS Cent. Sci. 3, 853–859 (2017).

    Article  CAS  Google Scholar 

  224. McGovern, M. S., Garnett, E. C., Rice, C., Masel, R. I. & Wieckowski, A. Effects of Nafion as a binding agent for unsupported nanoparticle catalysts. J. Power Sources 115, 35–39 (2003).

    Article  CAS  Google Scholar 

  225. Zhang, S. et al. Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J. Am. Chem. Soc. 136, 7845–7848 (2014).

    Article  CAS  Google Scholar 

  226. Zhao, S.-F., Horne, M., Bond, A. M. & Zhang, J. Is the imidazolium cation a unique promoter for electrocatalytic reduction of carbon dioxide? J. Phys. Chem. C. 120, 23989–24001 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Parts of this work were supported by the US Department of Energy (DOE), under contracts DE-FE0031706 and DE-SC0018540. The opinions here are those of the authors and may not reflect the opinions of the DOE. S.R., D.C. and C.P.B. are grateful to the Natural Resources Canada’s Energy Innovation Program (RGPIN-2018-06748) and Canadian Institute for Advanced Research (BSE-BERL-162173) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard I. Masel.

Ethics declarations

Competing interests

Dioxide Materials is in the business of producing and selling materials for CO2 electrolysers including catalyst-coated electrodes. R.I.M., Z.L., H.Y., J.J.K. and D.C. have an interest in those sales.

Additional information

Peer review information Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masel, R.I., Liu, Z., Yang, H. et al. An industrial perspective on catalysts for low-temperature CO2 electrolysis. Nat. Nanotechnol. 16, 118–128 (2021). https://doi.org/10.1038/s41565-020-00823-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-020-00823-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing