Nanomaterials for T-cell cancer immunotherapy

Abstract

T-cell-based immunotherapies hold promise for the treatment of many types of cancer, with three approved products for B-cell malignancies and a large pipeline of treatments in clinical trials. However, there are several challenges to their broad implementation. These include insufficient expansion of adoptively transferred T cells, inefficient trafficking of T cells into solid tumours, decreased T-cell activity due to a hostile tumour microenvironment and the loss of target antigen expression. Together, these factors restrict the number of therapeutically active T cells engaging with tumours. Nanomaterials are uniquely suited to overcome these challenges, as they can be rationally designed to enhance T-cell expansion, navigate complex physical barriers and modulate tumour microenvironments. Here, we present an overview of nanomaterials that have been used to overcome clinical barriers to T-cell-based immunotherapies and provide our outlook of this emerging field at the interface of cancer immunotherapy and nanomaterial design.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Classes of T cells deployed in ACT.
Fig. 2: The current nanomaterial toolbox can be applied to in vivo T-cell therapies.
Fig. 3: Nanomaterials for in vivo T-cell expansion.
Fig. 4: Nanomaterials overcome physical barriers and immune-suppressive environments for T-cell therapy.
Fig. 5: NBiTEs for cancer immunotherapy.

References

  1. 1.

    O’Leary, M. C. et al. FDA approval summary: tisagenlecleucel for treatment of patients with relapsed or refractory B-cell precursor acute lymphoblastic leukemia. Clin. Cancer Res. 25, 1142–1146 (2019).

    Article  Google Scholar 

  2. 2.

    Bouchkouj, N. et al. FDA approval summary: axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma. Clin. Cancer Res. 25, 1702–1708 (2019).

    Article  Google Scholar 

  3. 3.

    Wang, M. et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 382, 1331–1342 (2020).

    CAS  Article  Google Scholar 

  4. 4.

    Bollard, C. M. et al. Sustained complete responses in patients with lymphoma receiving autologous cytotoxic T lymphocytes targeting Epstein-Barr virus latent membrane proteins. J. Clin. Oncol. 32, 798–808 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    Xu, J. et al. Exploratory trial of a biepitopic CAR T-targeting B cell maturation antigen in relapsed/refractory multiple myeloma. Proc. Natl Acad. Sci. USA 116, 9543–9551 (2019).

    CAS  Article  Google Scholar 

  6. 6.

    Cohen, A. D. et al. B cell maturation antigen–specific CAR T cells are clinically active in multiple myeloma. J. Clin. Invest. 129, 2210–2221 (2019).

    Article  Google Scholar 

  7. 7.

    Raje, N. et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N. Engl. J. Med. 380, 1726–1737 (2019).

    CAS  Article  Google Scholar 

  8. 8.

    Stevanović, S. et al. A phase II study of tumor-infiltrating lymphocyte therapy for human papillomavirus-associated epithelial cancers. Clin. Cancer Res. 25, 1486–1493 (2019).

    Article  Google Scholar 

  9. 9.

    Jazaeri, A. A. et al. Safety and efficacy of adoptive cell transfer using autologous tumor infiltrating lymphocytes (LN-145) for treatment of recurrent, metastatic, or persistent cervical carcinoma. J. Clin. Oncol. 37, 2538 (2019).

    Article  Google Scholar 

  10. 10.

    Hong, D. S. et al. Phase I dose escalation and expansion trial to assess the safety and efficacy of ADP-A2M4 SPEAR T cells in advanced solid tumors. J. Clin. Oncol. 38, 102 (2020).

    Article  Google Scholar 

  11. 11.

    Louis, C. U. et al. Adoptive transfer of EBV-specific T cells results in sustained clinical responses in patients with locoregional nasopharyngeal carcinoma. J. Immunother. 33, 983–990 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    Huang, J. et al. Epstein‐Barr virus‐specific adoptive immunotherapy for recurrent, metastatic nasopharyngeal carcinoma. Cancer 123, 2642–2650 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Guedan, S., Ruella, M. & June, C. H. Emerging cellular therapies for cancer. Annu. Rev. Immunol. 37, 145–171 (2019).

    CAS  Article  Google Scholar 

  14. 14.

    June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    Gilham, D. E., Debets, R., Pule, M., Hawkins, R. E. & Abken, H. CAR-T cells and solid tumors: tuning T cells to challenge an inveterate foe. Trends Mol. Med. 18, 377–384 (2012).

    CAS  Article  Google Scholar 

  16. 16.

    Caruana, I. et al. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat. Med. 21, 524–529 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Buckanovich, R. J. et al. Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nat. Med. 14, 28–36 (2008).

    CAS  Article  Google Scholar 

  18. 18.

    Motz, G. T. et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat. Med. 20, 607–615 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    Ren, J. et al. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin. Cancer Res. 23, 2255–2266 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Bollard, C. M. et al. Tumor-specific T-cells engineered to overcome tumor immune evasion induce clinical responses in patients with relapsed Hodgkin lymphoma. J. Clin. Oncol. 36, 1128–1139 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    Chang, C.-H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    Lukashev, D. et al. Cutting edge: hypoxia-inducible factor 1α and its activation-inducible short isoform I.1 negatively regulate functions of CD4+ and CD8+ T lymphocytes. J. Immunol. 177, 4962–4965 (2006).

    CAS  Article  Google Scholar 

  23. 23.

    Sotillo, E. et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 5, 1282–1295 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    O’Rourke, D. M. et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl. Med. 9, eaaa0984 (2017).

    Article  CAS  Google Scholar 

  25. 25.

    Hamieh, M. et al. CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature 568, 112–116 (2019).

    CAS  Article  Google Scholar 

  26. 26.

    Shi, J., Kantoff, P. W., Wooster, R. & Farokhzad, O. C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17, 20–37 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    D’Mello, S. R. et al. The evolving landscape of drug products containing nanomaterials in the United States. Nat. Nanotechnol. 12, 523–529 (2017).

    Article  CAS  Google Scholar 

  28. 28.

    Jones, A.-A. D. III, Mi, G. & Webster, T. J. A status report on FDA approval of medical devices containing nanostructured materials. Trend. Biotechnol. 37, 117–120 (2019).

    CAS  Article  Google Scholar 

  29. 29.

    Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic: an update. Bioeng. Transl. Med. 4, e10143 (2019).

    Google Scholar 

  30. 30.

    Maeda, H., Wu, J., Sawa, T., Matsumura, Y. & Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release 65, 271–284 (2000).

    CAS  Article  Google Scholar 

  31. 31.

    Barenholz, Y. C. Doxil®—the first FDA-approved nano-drug: lessons learned. J. Control. Release 160, 117–134 (2012).

    CAS  Article  Google Scholar 

  32. 32.

    Miele, E., Spinelli, G. P., Miele, E., Tomao, F. & Tomao, S. Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int. J. Nanomed. 4, 99–105 (2009).

    CAS  Google Scholar 

  33. 33.

    Bobo, D., Robinson, K. J., Islam, J., Thurecht, K. J. & Corrie, S. R. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm. Res. 33, 2373–2387 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    Petersen, G. H., Alzghari, S. K., Chee, W., Sankari, S. S. & La-Beck, N. M. Meta-analysis of clinical and preclinical studies comparing the anticancer efficacy of liposomal versus conventional non-liposomal doxorubicin. J. Control. Release 232, 255–264 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    Gradishar, W. J. et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J. Clin. Oncol. 23, 7794–7803 (2005).

    CAS  Article  Google Scholar 

  36. 36.

    Bertrand, N., Wu, J., Xu, X., Kamaly, N. & Farokhzad, O. C. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Del. Rev. 66, 2–25 (2014).

    CAS  Article  Google Scholar 

  37. 37.

    Bazak, R., Houri, M., El Achy, S., Kamel, S. & Refaat, T. Cancer active targeting by nanoparticles: a comprehensive review of literature. J. Cancer Res. Clin. Oncol. 141, 769–784 (2015).

    CAS  Article  Google Scholar 

  38. 38.

    Lu, Y., Aimetti, A. A., Langer, R. & Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2, 16075 (2016).

    Article  CAS  Google Scholar 

  39. 39.

    Airan, R. D. et al. Noninvasive targeted transcranial neuromodulation via focused ultrasound gated drug release from nanoemulsions. Nano Lett. 17, 652–659 (2017).

    CAS  Article  Google Scholar 

  40. 40.

    Kemp, J. A., Shim, M. S., Heo, C. Y. & Kwon, Y. J. “Combo” nanomedicine: co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv. Drug Del. Rev. 98, 3–18 (2016).

    CAS  Article  Google Scholar 

  41. 41.

    Vaughan, H. J., Green, J. J. & Tzeng, S. Y. Cancer‐targeting nanoparticles for combinatorial nucleic acid delivery. Adv. Mater. 32, 1901081 (2020).

    CAS  Article  Google Scholar 

  42. 42.

    Wang, H. & Mooney, D. J. Biomaterial-assisted targeted modulation of immune cells in cancer treatment. Nat. Mater. 17, 761–772 (2018).

    CAS  Article  Google Scholar 

  43. 43.

    Irvine, D. J. & Dane, E. L. Enhancing cancer immunotherapy with nanomedicine. Nat. Rev. Immunol. 20, 321–334 (2020).

    CAS  Article  Google Scholar 

  44. 44.

    Dellacherie, M. O., Seo, B. R. & Mooney, D. J. Macroscale biomaterials strategies for local immunomodulation. Nat. Rev. Mater. 4, 379–397 (2019).

    Article  Google Scholar 

  45. 45.

    Goldberg, M. S. Improving cancer immunotherapy through nanotechnology. Nat. Rev. Cancer 19, 587–602 (2019).

    CAS  Article  Google Scholar 

  46. 46.

    Xia, Y., Tian, J. & Chen, X. Effect of surface properties on liposomal siRNA delivery. Biomaterials 79, 56–68 (2016).

    CAS  Article  Google Scholar 

  47. 47.

    Banerjee, A., Qi, J., Gogoi, R., Wong, J. & Mitragotri, S. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J. Control. Release 238, 176–185 (2016).

    CAS  Article  Google Scholar 

  48. 48.

    Zhao, Z., Ukidve, A., Krishnan, V. & Mitragotri, S. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv. Drug Del. Rev. 143, 3–21 (2019).

    CAS  Article  Google Scholar 

  49. 49.

    Zhu, M. et al. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc. Chem. Res. 46, 622–631 (2013).

    CAS  Article  Google Scholar 

  50. 50.

    Duan, X. & Li, Y. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 9, 1521–1532 (2013).

    CAS  Article  Google Scholar 

  51. 51.

    Mura, S., Nicolas, J. & Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003 (2013).

    CAS  Article  Google Scholar 

  52. 52.

    Kamaly, N., Yameen, B., Wu, J. & Farokhzad, O. C. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem. Rev. 116, 2602–2663 (2016).

    CAS  Article  Google Scholar 

  53. 53.

    Chen, Q. et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 14, 89–97 (2019).

    CAS  Article  Google Scholar 

  54. 54.

    Riley, R. S., June, C. H., Langer, R. & Mitchell, M. J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 18, 175–196 (2019).

    CAS  Article  Google Scholar 

  55. 55.

    Zheng, Y. et al. In vivo targeting of adoptively transferred T-cells with antibody- and cytokine-conjugated liposomes. J. Control. Release 172, 426–435 (2013).

    CAS  Article  Google Scholar 

  56. 56.

    Tang, L. et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat. Biotechnol. 36, 707–716 (2018). This study describes a strategy that facilitates in vivo T-cell expansion via a stimuli-responsive cytokine release nanotechnology.

    CAS  Article  Google Scholar 

  57. 57.

    Reinhard, K. et al. An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. Science 367, 446–453 (2020). In this paper, a lipid nanomaterial-based mRNA vaccine (CARVac) was designed to enhance CAR T-cell expansion in vivo.

    CAS  Article  Google Scholar 

  58. 58.

    Cheng, Q. et al. Reprogramming exosomes as nanoscale controllers of cellular immunity. J. Am. Chem. Soc. 140, 16413–16417 (2018). In this study, an exosome-based NBiTE that can re-direct T-cell functions for cancer immunotherapy was developed.

    CAS  Article  Google Scholar 

  59. 59.

    Huang, Y. et al. Dual-mechanism based CTLs infiltration enhancement initiated by Nano-sapper potentiates immunotherapy against immune-excluded tumors. Nat. Commun. 11, 622 (2020). This study developed a core–shell calcium phosphate liposome nanomaterial to enhance CTL infiltration in an immune-excluded tumour.

    CAS  Article  Google Scholar 

  60. 60.

    Stephan, S. B. et al. Biopolymer implants enhance the efficacy of adoptive T-cell therapy. Nat. Biotechnol. 33, 97–101 (2015). This paper describes nanomaterial-based scaffolds to locally deliver T cells to solid tumours.

    CAS  Article  Google Scholar 

  61. 61.

    Zhang, F. et al. Nanoparticles that reshape the tumor milieu create a therapeutic window for effective T-cell therapy in solid malignancies. Cancer Res. 78, 3718–3730 (2018).

    CAS  Google Scholar 

  62. 62.

    Sockolosky, J. T. et al. Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science 359, 1037–1042 (2018).

    CAS  Article  Google Scholar 

  63. 63.

    Smith, T. T. et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat. Nanotechnol. 12, 813–820 (2017). This study developed a polymeric nanomaterial to specifically deliver CAR-encoding genes to T cells in vivo, inducing CAR expression and expansion in vivo.

    CAS  Article  Google Scholar 

  64. 64.

    Schmidts, A. & Maus, M. V. Making CAR T cells a solid option for solid tumors. Front. Immunol. 9, 2593 (2018).

    Article  CAS  Google Scholar 

  65. 65.

    Landskron, G., De la Fuente, M., Thuwajit, P., Thuwajit, C. & Hermoso, M. A. Chronic inflammation and cytokines in the tumor microenvironment. J. Immunol. Res. 2014, 149185 (2014).

    Article  CAS  Google Scholar 

  66. 66.

    Eklund, J. W. & Kuzel, T. M. A review of recent findings involving interleukin-2-based cancer therapy. Curr. Opin. Oncol. 16, 542–546 (2004).

    CAS  Article  Google Scholar 

  67. 67.

    Balkwill, F. Tumour necrosis factor and cancer. Nat. Rev. Cancer 9, 361–371 (2009).

    CAS  Article  Google Scholar 

  68. 68.

    McDermott, D. F. et al. The high-dose aldesleukin “select” trial: a trial to prospectively validate predictive models of response to treatment in patients with metastatic renal cell carcinoma. Clin. Cancer Res. 21, 561–568 (2015).

    CAS  Article  Google Scholar 

  69. 69.

    Weigent, D. A., Huff, T. L., Peterson, J. W., Stanton, G. J. & Baron, S. Role of interferon in streptococcal infection in the mouse. Microb. Pathog. 1, 399–407 (1986).

    CAS  Article  Google Scholar 

  70. 70.

    Tartour, E., Mathiot, C. & Fridman, W. Current status of interleukin-2 therapy in cancer. Biomed. Pharmacother. 46, 473–484 (1992).

    CAS  Article  Google Scholar 

  71. 71.

    Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. & June, C. H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011).

    CAS  Article  Google Scholar 

  72. 72.

    D’Angelo, S. P. et al. Antitumor activity associated with prolonged persistence of adoptively transferred NY-ESO-1 c259T cells in synovial sarcoma. Cancer Discov. 8, 944–957 (2018).

    Article  CAS  Google Scholar 

  73. 73.

    Parmiani, G., Rivoltini, L., Andreola, G. & Carrabba, M. Cytokines in cancer therapy. Immunol. Lett. 74, 41–44 (2000).

    CAS  Article  Google Scholar 

  74. 74.

    Lotze, M. T. et al. In vivo administration of purified human interleukin 2. II. Half life, immunologic effects, and expansion of peripheral lymphoid cells in vivo with recombinant IL 2. J. Immunol. 135, 2865–2875 (1985).

    CAS  Google Scholar 

  75. 75.

    Atkins, M. B. et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol. 17, 2105 (1999).

    CAS  Article  Google Scholar 

  76. 76.

    Mishra, P., Nayak, B. & Dey, R. PEGylation in anti-cancer therapy: an overview. Asian J. Pharm. Sci. 11, 337–348 (2016).

    Article  Google Scholar 

  77. 77.

    Garber, K. Cytokine resurrection: engineered IL-2 ramps up immuno-oncology responses. Nat. Biotechnol. 36, 378–379 (2018).

    CAS  Article  Google Scholar 

  78. 78.

    Xie, Y. Q., Wei, L. & Tang, L. Immunoengineering with biomaterials for enhanced cancer immunotherapy. WIREs Nanomed. Nanobiotechnol. 10, e1506 (2018).

    Article  Google Scholar 

  79. 79.

    McHugh, M. D. et al. Paracrine co-delivery of TGF-β and IL-2 using CD4-targeted nanoparticles for induction and maintenance of regulatory T cells. Biomaterials 59, 172–181 (2015).

    CAS  Article  Google Scholar 

  80. 80.

    Yao, H. et al. Effective melanoma immunotherapy with interleukin-2 delivered by a novel polymeric nanoparticle. Mol. Cancer Ther. 10, 1082–1092 (2011).

    CAS  Article  Google Scholar 

  81. 81.

    Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015).

    CAS  Article  Google Scholar 

  82. 82.

    Zheng, Y., Tang, L., Mabardi, L., Kumari, S. & Irvine, D. J. Enhancing adoptive cell therapy of cancer through targeted delivery of small-molecule immunomodulators to internalizing or noninternalizing receptors. ACS Nano 11, 3089–3100 (2017).

    CAS  Article  Google Scholar 

  83. 83.

    Schmid, D. et al. T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity. Nat. Commun. 8, 1747 (2017).

    Article  CAS  Google Scholar 

  84. 84.

    Ou, W. et al. Regulatory T cell-targeted hybrid nanoparticles combined with immuno-checkpoint blockage for cancer immunotherapy. J. Control. Release 281, 84–96 (2018).

    CAS  Article  Google Scholar 

  85. 85.

    Kosmides, A. K., Sidhom, J.-W., Fraser, A., Bessell, C. A. & Schneck, J. P. Dual targeting nanoparticle stimulates the immune system to inhibit tumor growth. ACS Nano 11, 5417–5429 (2017).

    CAS  Article  Google Scholar 

  86. 86.

    Pallandre, J.-R. et al. Role of STAT3 in CD4+CD25+FOXP3+ regulatory lymphocyte generation: implications in graft-versus-host disease and antitumor immunity. J. Immunol. 179, 7593–7604 (2007).

    CAS  Article  Google Scholar 

  87. 87.

    Park, J. et al. Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat. Mater. 11, 895–905 (2012).

    CAS  Article  Google Scholar 

  88. 88.

    Xie, Y.-Q. et al. Redox-responsive interleukin-2 nanogel specifically and safely promotes the proliferation and memory precursor differentiation of tumor-reactive T-cells. Biomater. Sci. 7, 1345–1357 (2019).

    CAS  Article  Google Scholar 

  89. 89.

    Berger, C. et al. Safety and immunologic effects of IL-15 administration in nonhuman primates. Blood 114, 2417–2426 (2009).

    CAS  Article  Google Scholar 

  90. 90.

    Robinson, T. O. & Schluns, K. S. The potential and promise of IL-15 in immuno-oncogenic therapies. Immunol. Lett. 190, 159–168 (2017).

    CAS  Article  Google Scholar 

  91. 91.

    Huang, B. et al. Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells. Sci. Transl. Med. 7, 291ra94 (2015).

    Article  CAS  Google Scholar 

  92. 92.

    Jones, R. B. et al. Antigen recognition-triggered drug delivery mediated by nanocapsule-functionalized cytotoxic T-cells. Biomaterials 117, 44–53 (2017).

    CAS  Article  Google Scholar 

  93. 93.

    Siriwon, N. et al. CAR-T cells surface-engineered with drug-encapsulated nanoparticles can ameliorate intratumoral T cell hypofunction. Cancer Immunol. Res. 6, 812–824 (2018).

    CAS  Article  Google Scholar 

  94. 94.

    Siegler, E. L. et al. Combination cancer therapy using chimeric antigen receptor-engineered natural killer cells as drug carriers. Mol. Ther. 25, 2607–2619 (2017).

    CAS  Article  Google Scholar 

  95. 95.

    Martin, J. D., Cabral, H., Stylianopoulos, T. & Jain, R. K. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges. Nat. Rev. Clin. Oncol. 17, 251–266 (2020).

    Article  Google Scholar 

  96. 96.

    Slaney, C. Y. et al. Dual-specific chimeric antigen receptor T cells and an indirect vaccine eradicate a variety of large solid tumors in an immunocompetent, self-antigen setting. Clin. Cancer Res. 23, 2478–2490 (2017).

    CAS  Article  Google Scholar 

  97. 97.

    Tanaka, M. et al. Vaccination targeting native receptors to enhance the function and proliferation of chimeric antigen receptor (CAR)-modified T cells. Clin. Cancer Res. 23, 3499–3509 (2017).

    CAS  Article  Google Scholar 

  98. 98.

    Ma, L. et al. Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor. Science 365, 162–168 (2019). In this study, amphiphile CAR T ligands that can preferentially be anchored to the dendritic cell surface to boost in vivo CAR T-cell expansion were developed.

    CAS  Google Scholar 

  99. 99.

    Tsopelas, C. & Sutton, R. Why certain dyes are useful for localizing the sentinel lymph node. J. Nucl. Med. 43, 1377–1382 (2002).

    CAS  Google Scholar 

  100. 100.

    Liu, H. et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507, 519–522 (2014).

    CAS  Article  Google Scholar 

  101. 101.

    Zeng, B. et al. Self-adjuvanting nanoemulsion targeting dendritic cell receptor Clec9A enables antigen-specific immunotherapy. J. Clin. Invest. 128, 1971–1984 (2018).

    Article  Google Scholar 

  102. 102.

    Shah, N. N. & Fry, T. J. Mechanisms of resistance to CAR T cell therapy. Nat. Rev. Clin. Oncol. 16, 372–385 (2019).

    CAS  Google Scholar 

  103. 103.

    Rafiq, S., Hackett, C. S. & Brentjens, R. J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 17, 147–167 (2020).

    Article  Google Scholar 

  104. 104.

    Chen, Q. et al. Photothermal therapy promotes tumor infiltration and antitumor activity of CAR T cells. Adv. Mater. 31, 1900192 (2019). This study developed a photothermal agent-encapsulated PLGA nanomaterial to disrupt tumour ECM to enhance CAR T-cell penetration in solid tumour.

    Article  CAS  Google Scholar 

  105. 105.

    Ganesh, K. & Massagué, J. TGF-β inhibition and immunotherapy: checkmate. Immunity 48, 626–628 (2018).

    CAS  Article  Google Scholar 

  106. 106.

    Bommareddy, P. K., Shettigar, M. & Kaufman, H. L. Integrating oncolytic viruses in combination cancer immunotherapy. Nat. Rev. Immunol. 18, 498–513 (2018).

    CAS  Article  Google Scholar 

  107. 107.

    Vitiello, G. A., Cohen, D. J. & Miller, G. Harnessing the microbiome for pancreatic cancer immunotherapy. Trend. Cancer 5, 670–676 (2019).

    CAS  Article  Google Scholar 

  108. 108.

    Rahmaniah, R. et al. Alpha mangostin inhibits hepatic stellate cells activation through TGF-β/Smad and Akt signaling pathways: an in vitro study in LX2. Drug Res. 68, 153–158 (2018).

    CAS  Article  Google Scholar 

  109. 109.

    Gajewski, T. F. et al. Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Curr. Opin. Immunol. 25, 268–276 (2013).

    CAS  Article  Google Scholar 

  110. 110.

    Pitt, J. et al. Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy. Ann. Oncol. 27, 1482–1492 (2016).

    CAS  Article  Google Scholar 

  111. 111.

    Coon, M. E., Stephan, S. B., Gupta, V., Kealey, C. P. & Stephan, M. T. Nitinol thin films functionalized with CAR-T cells for the treatment of solid tumours. Nat. Biomed. Eng. 4, 195–206 (2020). This study developed nickel–titanium alloys with precisely defined micropatterned mesh structures for improved CAR T-cell delivery in solid tumour.

    CAS  Article  Google Scholar 

  112. 112.

    Smith, T. T. et al. Biopolymers codelivering engineered T cells and STING agonists can eliminate heterogeneous tumors. J. Clin. Invest. 127, 2176–2191 (2017).

    Article  Google Scholar 

  113. 113.

    Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    CAS  Article  Google Scholar 

  114. 114.

    Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).

    CAS  Article  Google Scholar 

  115. 115.

    Hyrenius-Wittsten, A. & Roybal, K. T. Paving new roads for CARs. Trend. Cancer 5, 583–592 (2019).

    CAS  Article  Google Scholar 

  116. 116.

    Hughes-Parry, H. E., Cross, R. S. & Jenkins, M. R. The evolving protein engineering in the design of chimeric antigen receptor T cells. Int. J. Mol. Sci. 21, 204 (2020).

    CAS  Article  Google Scholar 

  117. 117.

    Goebeler, M.-E. et al. Bispecific T-cell engager (BiTE) antibody construct blinatumomab for the treatment of patients with relapsed/refractory non-Hodgkin lymphoma: final results from a phase I study. J. Clin. Oncol. 34, 1104–1111 (2016).

    CAS  Article  Google Scholar 

  118. 118.

    Baeuerle, P. A. & Reinhardt, C. Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res. 69, 4941–4944 (2009).

    CAS  Article  Google Scholar 

  119. 119.

    Choi, B. D. et al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat. Biotechnol. 37, 1049–1058 (2019).

    CAS  Article  Google Scholar 

  120. 120.

    Zhukovsky, E. A., Morse, R. J. & Maus, M. V. Bispecific antibodies and CARs: generalized immunotherapeutics harnessing T cell redirection. Curr. Opin. Immunol. 40, 24–35 (2016).

    CAS  Article  Google Scholar 

  121. 121.

    Huehls, A. M., Coupet, T. A. & Sentman, C. L. Bispecific T-cell engagers for cancer immunotherapy. Immunol. Cell Biol. 93, 290–296 (2015).

    CAS  Article  Google Scholar 

  122. 122.

    Kantarjian, H. et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N. Engl. J. Med. 376, 836–847 (2017).

    CAS  Article  Google Scholar 

  123. 123.

    Topp, M. S. et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 16, 57–66 (2015).

    CAS  Article  Google Scholar 

  124. 124.

    Brischwein, K. et al. Strictly target cell-dependent activation of T cells by bispecific single-chain antibody constructs of the BiTE class. J. Immunother. 30, 798–807 (2007).

    CAS  Article  Google Scholar 

  125. 125.

    Song, W., Das, M. & Chen, X. Nanotherapeutics for immuno-oncology: a crossroad for new paradigms. Trend. Cancer 6, 288–298 (2020).

    CAS  Article  Google Scholar 

  126. 126.

    Montet, X., Funovics, M., Montet-Abou, K., Weissleder, R. & Josephson, L. Multivalent effects of RGD peptides obtained by nanoparticle display. J. Med. Chem. 49, 6087–6093 (2006).

    CAS  Article  Google Scholar 

  127. 127.

    Lipka, J. et al. Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials 31, 6574–6581 (2010).

    CAS  Article  Google Scholar 

  128. 128.

    Liu, X. et al. Mixed‐charge nanoparticles for long circulation, low reticuloendothelial system clearance, and high tumor accumulation. Adv. Healthc. Mater. 3, 1439–1447 (2014).

    CAS  Article  Google Scholar 

  129. 129.

    Romberg, B., Hennink, W. E. & Storm, G. Sheddable coatings for long-circulating nanoparticles. Pharm. Res. 25, 55–71 (2008).

    CAS  Article  Google Scholar 

  130. 130.

    Sun, Z. et al. A next-generation tumor-targeting IL-2 preferentially promotes tumor-infiltrating CD8+ T-cell response and effective tumor control. Nat. Commun. 10, 3874 (2019).

    CAS  Article  Google Scholar 

  131. 131.

    Chiu, G. N. et al. Modulation of cancer cell survival pathways using multivalent liposomal therapeutic antibody constructs. Mol. Cancer Ther. 6, 844–855 (2007).

    CAS  Article  Google Scholar 

  132. 132.

    Yuan, H. et al. Multivalent bi-specific nanobioconjugate engager for targeted cancer immunotherapy. Nat. Nanotechnol. 12, 763–769 (2017).

    CAS  Article  Google Scholar 

  133. 133.

    Peiris, P. M. et al. Precise targeting of cancer metastasis using multi-ligand nanoparticles incorporating four different ligands. Nanoscale 10, 6861–6871 (2018).

    CAS  Article  Google Scholar 

  134. 134.

    Cai, H. et al. Full control of ligand positioning reveals spatial thresholds for T cell receptor triggering. Nat. Nanotechnol. 13, 610–617 (2018).

    CAS  Article  Google Scholar 

  135. 135.

    Qi, J. et al. Chemically programmable and switchable CAR‐T therapy. Angew. Chem. Int. Ed. 59, 12178–12185 (2020).

    CAS  Article  Google Scholar 

  136. 136.

    Huang, Z. et al. Engineering light-controllable CAR T cells for cancer immunotherapy. Sci. Adv. 6, eaay9209 (2020).

    CAS  Article  Google Scholar 

  137. 137.

    Wu, C.-Y., Roybal, K. T., Puchner, E. M., Onuffer, J. & Lim, W. A. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science 350, aab4077 (2015).

    Article  CAS  Google Scholar 

  138. 138.

    Chen, Y.-S., Zhao, Y., Yoon, S. J., Gambhir, S. S. & Emelianov, S. Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window. Nat. Nanotechnol. 14, 465–472 (2019).

    CAS  Article  Google Scholar 

  139. 139.

    Zhong, Y. et al. Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1500 nm. Nat. Commun. 8, 737 (2017).

    Article  CAS  Google Scholar 

  140. 140.

    Xing, Z. et al. The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging. Nanotechnology 21, 145607 (2010).

    Article  CAS  Google Scholar 

  141. 141.

    Meir, R. et al. Nanomedicine for cancer immunotherapy: tracking cancer-specific T-cells in vivo with gold nanoparticles and CT imaging. ACS Nano 9, 6363–6372 (2015).

    CAS  Article  Google Scholar 

  142. 142.

    Giavridis, T. et al. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat. Med. 24, 731–738 (2018).

    CAS  Article  Google Scholar 

  143. 143.

    Norelli, M. et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat. Med. 24, 739–748 (2018).

    CAS  Article  Google Scholar 

  144. 144.

    Wu, Y., Gu, W., Li, J., Chen, C. & Xu, Z. P. Silencing PD-1 and PD-L1 with nanoparticle-delivered small interfering RNA increases cytotoxicity of tumor-infiltrating lymphocytes. Nanomedicine 14, 955–967 (2019).

    CAS  Article  Google Scholar 

  145. 145.

    Chen, M., Ouyang, H., Zhou, S., Li, J. & Ye, Y. PLGA-nanoparticle mediated delivery of anti-OX40 monoclonal antibody enhances anti-tumor cytotoxic T cell responses. Cell. Immunol. 287, 91–99 (2014).

    CAS  Article  Google Scholar 

  146. 146.

    Klichinsky, M. et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat. Biotechnol. 38, 947–953 (2020).

    CAS  Article  Google Scholar 

  147. 147.

    Shields, C. W. et al. Cellular backpacks for macrophage immunotherapy. Sci. Adv. 6, eaaz6579 (2020).

    CAS  Article  Google Scholar 

  148. 148.

    Kim, K.-S. et al. Multifunctional nanoparticles for genetic engineering and bioimaging of natural killer (NK) cell therapeutics. Biomaterials 221, 119418 (2019).

    CAS  Article  Google Scholar 

  149. 149.

    Wennhold, K., Shimabukuro-Vornhagen, A. & von Bergwelt-Baildon, M. B cell-based cancer immunotherapy. Transfus. Med. Hemoth. 46, 36–46 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

M.J.M. acknowledges support from a Burroughs Wellcome Fund Career Award at the Scientific Interface (CASI), a US National Institutes of Health (NIH) Director’s New Innovator Award (DP2 TR002776), a grant from the American Cancer Society (129784-IRG-16-188-38-IRG), the National Institutes of Health (NCI R01 CA241661, NCI R37 CA244911 and NIDDK R01 DK123049), an Abramson Cancer Center (ACC)–School of Engineering and Applied Sciences (SEAS) Discovery Grant (P30 CA016520), and a 2018 AACR-Bayer Innovation and Discovery Grant, Grant Number 18-80-44-MITC. M.M.B. was supported by a Tau Beta Pi Graduate Research Fellowship and an NIH Training in HIV Pathogenesis T32 Program (T32 AI007632).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael J. Mitchell.

Ethics declarations

Competing interests

C.H.J. works under a research collaboration involving the University of Pennsylvania and the Novartis Institutes of Biomedical Research, Inc. C.H.J. is an inventor of intellectual property licensed by the University of Pennsylvania to Novartis. C.H.J. has sponsored research and equity from Tmunity Therapeutics. C.H.J. is a consultant for Immune Design, Viracta and Carisma. N.C.S. holds shares in Tmunity Therapeutics and Fate Therapeutics.

Additional information

Peer review information Nature Nanotechnology thanks Paul Beavis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gong, N., Sheppard, N.C., Billingsley, M.M. et al. Nanomaterials for T-cell cancer immunotherapy. Nat. Nanotechnol. 16, 25–36 (2021). https://doi.org/10.1038/s41565-020-00822-y

Download citation

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research