Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hydrogen storage in incompletely etched multilayer Ti2CTx at room temperature

Abstract

Hydrogen storage materials are the key to hydrogen energy utilization. However, current materials can hardly meet the storage capacity and/or operability requirements of practical applications. Here we report an advancement in hydrogen storage performance and related mechanism based on a hydrofluoric acid incompletely etched MXene, namely, a multilayered Ti2CTx (T is a functional group) stack that shows an unprecedented hydrogen uptake of 8.8 wt% at room temperature and 60 bar H2. Even under completely ambient conditions (25 °C, 1 bar air), Ti2CTx is still able to retain ~4 wt% hydrogen. The hydrogen storage is stable and reversible in the material, and the hydrogen release is controllable by pressure and temperature below 95 °C. The storage mechanism is deduced to be a nanopump-effect-assisted weak chemisorption in the sub-nanoscale interlayer space of the material. Such a storage approach provides a promising strategy for designing practical hydrogen storage materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Structural characterization of Ti2CTx.
Fig. 2: Hydrogen storage performances of Ti2CTx.
Fig. 3: Key structural factors determining hydrogen storage in Ti2CTx.
Fig. 4: Mechanism analysis of hydrogen storage in Ti2CTx.

Data availability

Most of the data have been provided as supplementary figures and videos along with this article. Additional data supporting this paper are available from the corresponding author upon reasonable request.

References

  1. 1.

    Hosseini, S. E. & Wahid, M. A. Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development. Renew. Sustain. Energy Rev. 57, 850–866 (2016).

    CAS  Article  Google Scholar 

  2. 2.

    Schneemann, A. et al. Nanostructured metal hydrides for hydrogen storage. Chem. Rev. 118, 10775–10839 (2018).

    CAS  Article  Google Scholar 

  3. 3.

    He, T., Pachfule, P., Wu, H., Xu, Q. & Chen, P. Hydrogen carriers. Nat. Rev. Mater. 1, 16059 (2016).

  4. 4.

    Züttel, A. Materials for hydrogen storage. Mater. Today 6, 24–33 (2003).

    Article  Google Scholar 

  5. 5.

    Orimo, S.-i, Nakamori, Y., Eliseo, J. R., Züttel, A. & Jensen, C. M. Complex hydrides for hydrogen storage. Chem. Rev. 107, 4111–4132 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    Rowsell, J. L. & Yaghi, O. M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal–organic frameworks. J. Am. Chem. Soc. 128, 1304–1315 (2006).

    CAS  Article  Google Scholar 

  7. 7.

    Vajo, J. J., Skeith, S. L. & Mertens, F. Reversible storage of hydrogen in destabilized LiBH4. J. Phys. Chem. B 109, 3719–3722 (2005).

    CAS  Article  Google Scholar 

  8. 8.

    Sakintuna, B., Lamaridarkrim, F. & Hirscher, M. Metal hydride materials for solid hydrogen storage: a review. Int. J. Hydrogen Energy 32, 1121–1140 (2007).

    CAS  Article  Google Scholar 

  9. 9.

    Jena, P. Materials for hydrogen storage: past, present, and future. J. Phys. Chem. Lett. 2, 206–211 (2011).

    CAS  Article  Google Scholar 

  10. 10.

    Łodziana, Z., Dębski, A., Cios, G. & Budziak, A. Ternary LaNi4.75M0.25 hydrogen storage alloys: surface segregation, hydrogen sorption and thermodynamic stability. Int. J. Hydrogen Energy 44, 1760–1773 (2019).

    Article  CAS  Google Scholar 

  11. 11.

    Zhong, C. et al. Microstructures and electrochemical properties of LaNi3.8–xMnx hydrogen storage alloys. Electrochim. Acta 58, 668–673 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    Shao, H., Xin, G., Zheng, J., Li, X. & Akiba, E. Nanotechnology in Mg-based materials for hydrogen storage. Nano Energy 1, 590–601 (2012).

    CAS  Article  Google Scholar 

  13. 13.

    Lototskyy, M. V., Yartys, V. A., Pollet, B. G. & Bowman, R. C. Metal hydride hydrogen compressors: a review. Int. J. Hydrogen Energy 39, 5818–5851 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    Gao, M. et al. Ca(BH4)2–LiBH4–MgH2: a novel ternary hydrogen storage system with superior long-term cycling performance. J. Mater. Chem. A 1, 12285–12292 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    Chen, P., Xiong, Z., Luo, J., Lin, J. & Tan, K. L. Interaction of hydrogen with metal nitrides and imides. Nature 420, 302–304 (2002).

    CAS  Article  Google Scholar 

  16. 16.

    Zhang, J. et al. Metal hydride nanoparticles with ultrahigh structural stability and hydrogen storage activity derived from microencapsulated nanoconfinement. Adv. Mater. 29, 1700760 (2017).

    Article  CAS  Google Scholar 

  17. 17.

    Kubas, G. J. Molecular hydrogen complexes: coordination of a σ bond to transition metals. Acc. Chem. Res. 21, 120–128 (1988).

    Article  Google Scholar 

  18. 18.

    Morris, L. et al. A manganese hydride molecular sieve for practical hydrogen storage under ambient conditions. Energy Environ. Sci. 12, 1580–1591 (2019).

    CAS  Article  Google Scholar 

  19. 19.

    Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles (The United States Department of Energy, 2017).https://www.energy.gov/eere/fuelcells/downloads/target-explanation-document-onboard-hydrogen-storage-light-duty-fuel-cell

  20. 20.

    Naguib, M. et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    Hart, J. L. et al. Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 10, 522 (2019).

    CAS  Article  Google Scholar 

  22. 22.

    Zhang, C. J. et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 29, 4848–4856 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    Hu, M. et al. Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2Tx MXene. ACS Nano 12, 3578–3586 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    Yang, L. et al. Combining photocatalytic hydrogen generation and capsule storage in graphene based sandwich structures. Nat. Commun. 8, 16049 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Patchkovskii, S. et al. Graphene nanostructures as tunable storage media for molecular hydrogen. Proc. Natl Acad. Sci. USA 102, 10439–10444 (2005).

    CAS  Article  Google Scholar 

  26. 26.

    Ming, M. et al. Promoted effect of alkalization on the catalytic performance of Rh/alk-Ti3C2X2 (X = O, F) for the hydrodechlorination of chlorophenols in base-free aqueous medium. Appl. Catal. B 210, 462–469 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    Ahmed, B., Anjum, D. H., Hedhili, M. N., Gogotsi, Y. & Alshareef, H. N. H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes. Nanoscale 8, 7580–7587 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    Morris, L., Trudeau, M. L., Reed, D., Book, D. & Antonelli, D. M. Thermodynamically neutral Kubas-type hydrogen storage using amorphous Cr(iii) alkyl hydride gels. Phys. Chem. Chem. Phys. 17, 9480–9487 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    Ali, W. et al. Effects of Cu and Y substitution on hydrogen storage performance of TiFe0.86Mn0.1Y0.1–xCux. Int. J. Hydrogen Energy 42, 16620–16631 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    Srivastava, S. & Upadhyaya, R. K. Investigations of AB5-type hydrogen storage materials with enhanced hydrogen storage capacity. Int. J. Hydrogen Energy 36, 7114–7121 (2011).

    CAS  Article  Google Scholar 

  31. 31.

    Ding, L. et al. MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 9, 155 (2018).

    Article  CAS  Google Scholar 

  32. 32.

    Broom, D. P. & Hirscher, M. Irreproducibility in hydrogen storage material research. Energy Environ. Sci. 9, 3368–3380 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    Lai, S. et al. Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T: –OH, –F and –O). Nanoscale 7, 19390–19396 (2015).

    CAS  Article  Google Scholar 

  34. 34.

    Han, F. et al. Boosting the yield of MXene 2D sheets via a facile hydrothermal-assisted intercalation. ACS Appl. Mater. Interfaces 11, 8443–8452 (2019).

    CAS  Article  Google Scholar 

  35. 35.

    Piñero, J. J. et al. Diversity of adsorbed hydrogen on the TiC(001) surface at high coverages. J. Phys. Chem. C 122, 28013–28020 (2018).

    Article  CAS  Google Scholar 

  36. 36.

    Hu, Q. et al. MXene: a new family of promising hydrogen storage medium. J. Phys. Chem. A 117, 14253–14260 (2013).

    CAS  Article  Google Scholar 

  37. 37.

    Hu, Q. et al. Two-dimensional Sc2C: a reversible and high-capacity hydrogen storage material predicted by first-principles calculations. Int. J. Hydrogen Energy 39, 10606–10612 (2014).

    CAS  Article  Google Scholar 

  38. 38.

    Osti, N. C. et al. Evidence of molecular hydrogen trapped in two-dimensional layered titanium carbide-based MXene. Phys. Rev. Mater. 1, 024004 (2017).

    Article  Google Scholar 

  39. 39.

    Anderson, R. J. et al. NMR methods for characterizing the pore structures and hydrogen storage properties of microporous carbons. J. Am. Chem. Soc. 132, 8618–8626 (2010).

    CAS  Article  Google Scholar 

  40. 40.

    Hope, M. A. et al. NMR reveals the surface functionalisation of Ti3C2 MXene. Phys. Chem. Chem. Phys. 18, 5099–5102 (2016).

    CAS  Article  Google Scholar 

  41. 41.

    Wang, X., Andrews, L., Infante, I. & Gagliardi, L. Infrared spectra of the WH4(H2)4 complex in solid hydrogen. J. Am. Chem. Soc. 130, 1972–1978 (2008).

    CAS  Article  Google Scholar 

  42. 42.

    Hoang, T. K. A., Morris, L., Sun, J., Trudeau, M. L. & Antonelli, D. M. Titanium hydrazide gels for Kubas-type hydrogen storage. J. Mater. Chem. A 1, 1947–1951 (2013).

    CAS  Article  Google Scholar 

  43. 43.

    Hoang, T. K. A. & Antonelli, D. M. Exploiting the Kubas interaction in the design of hydrogen storage materials. Adv. Mater. 21, 1787–1800 (2009).

    CAS  Article  Google Scholar 

  44. 44.

    Laptash, N. M., Maslennikova, I. G. & Kaidalova, T. A. Ammonium oxofluorotitanates. J. Fluorine Chem. 99, 133–137 (1999).

    CAS  Article  Google Scholar 

  45. 45.

    Hancock, J. K. & Green, W. H. Vibrational deactivation of HF (v = 1) in pure HF and in HF-additive mixtures. J. Chem. Phys. 57, 4515–4529 (1972).

    CAS  Article  Google Scholar 

  46. 46.

    Wei, T. Y., Lim, K. L., Tseng, Y. S. & Chan, S. L. I. A review on the characterization of hydrogen in hydrogen storage materials. Renew. Sustain. Energy Rev. 79, 1122–1133 (2017).

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (21673014, 21975010 and 51731002). We thank X. G. Li (Peking University) for assistance in the hydrogen storage measurement. We acknowledge the General Purpose Powder Diffractometer at the China Spallation Neutron Source for providing the neutron powder diffraction analysis.

Author information

Affiliations

Authors

Contributions

J. Shui, S.L. and J.L. designed the research. S.L. and J.L. performed the experiments. S.L. and J. Shang conducted the DFT calculation. J.L., S.L., X.L. and J. Shui co-wrote the manuscript. X.L., L.X., R.Y. and J. Shui supervised the project. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Jianglan Shui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–24, Tables 1–5, Videos 1–4 and refs. 1–22.

Supplementary Video 1

Infrared thermal video of the ignition and combustion processes of a fully hydrogenated Ti2CTx disc.

Supplementary Video 2

Infrared thermal video of the ignition and combustion processes of a dehydrogenated Ti2CTx disc.

Supplementary Video 3

Video of the ignition and combustion processes of a hydrogenated Ti2CTx disc.

Supplementary Video 4

Video of the ignition and combustion processes of a dehydrogenated Ti2CTx disc.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Liu, J., Liu, X. et al. Hydrogen storage in incompletely etched multilayer Ti2CTx at room temperature. Nat. Nanotechnol. (2021). https://doi.org/10.1038/s41565-020-00818-8

Download citation

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research