Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Inducing micromechanical motion by optical excitation of a single quantum dot



Hybrid quantum optomechanical systems1 interface a macroscopic mechanical degree of freedom with a single two-level system such as a single spin2,3,4, a superconducting qubit5,6,7 or a single optical emitter8,9,10,11,12. Recently, hybrid systems operating in the microwave domain have witnessed impressive progress13,14. Concurrently, only a few experimental approaches have successfully addressed hybrid systems in the optical domain, demonstrating that macroscopic motion can modulate the two-level system transition energy9,10,15. However, the reciprocal effect, corresponding to the backaction of a single quantum system on a macroscopic mechanical resonator, has remained elusive. In contrast to an optical cavity, a two-level system operates with no more than a single energy quantum. Hence, it requires a much stronger hybrid coupling rate compared to cavity optomechanical systems1,16. Here, we build on the large strain coupling between an oscillating microwire and a single embedded quantum dot9. We resonantly drive the quantum dot’s exciton using a laser modulated at the mechanical frequency. State-dependent strain then results in a time-dependent mechanical force that actuates microwire motion. This force is almost three orders of magnitude larger than the radiation pressure produced by the photon flux interacting with the quantum dot. In principle, the state-dependent force could constitute a strategy to coherently encode the quantum dot quantum state onto a mechanical degree of freedom1.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Hybrid optomechanical system and experimental working principle.
Fig. 2: Schematic of the experimental set-up.
Fig. 3: Experimental demonstration of the QD-induced motion.

Data availability

Data are available from the public repository

Code availability

Data processing code is available from the public repository


  1. 1.

    Treutlein, P., Genes, C., Hammerer, K., Poggio, M. & Rabl, P. in Cavity Optomechanics (eds Aspelmeyer, M. et al.) Ch. 14 (Springer, 2014).

  2. 2.

    Rugar, D., Budakian, R., Mamin, H. J. & Chui, B. W. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004).

    CAS  Article  Google Scholar 

  3. 3.

    Rabl, P. et al. Strong magnetic coupling between an electronic spin qubit and a mechanical oscillator. Phys. Rev. B 79, 041302 (2009).

    Article  Google Scholar 

  4. 4.

    Arcizet, O. et al. A single nitrogen-vacancy defect coupled to a nanomechanical oscillator. Nat. Phys. 7, 879–883 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    LaHaye, M. D., Suh, J., Echternach, P. M., Schwab, K. & Roukes, M. L. Nanomechanical measurements of a superconducting qubit. Nature 459, 960–964 (2009).

    CAS  Article  Google Scholar 

  6. 6.

    O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010).

    Article  Google Scholar 

  7. 7.

    Pirkkalainen, J. M. et al. Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator. Nature 494, 211–215 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    Wilson-Rae, I., Zoller, P. & Imamoğlu, A. Laser cooling of a nanomechanical resonator mode to its quantum ground state. Phys. Rev. Lett. 92, 075507 (2004).

    CAS  Article  Google Scholar 

  9. 9.

    Yeo, I. et al. Strain-mediated coupling in a quantum dot–mechanical oscillator hybrid system. Nat. Nanotechnol. 9, 106–110 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    Tian, Y., Navarro, P. & Orrit, M. Single molecule as a local acoustic detector for mechanical oscillators. Phys. Rev. Lett. 113, 135505 (2014).

    Article  Google Scholar 

  11. 11.

    Teissier, J., Barfuss, A., Appel, P., Neu, E. & Maletinsky, P. Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator. Phys. Rev. Lett. 113, 020503 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    Lee, D. H., Lee, K. W., Cady, J. V., Ovartchaiyapong, P. & Bleszynski Jayich, A. C. Topical review: spins and mechanics in diamond. J. Opt. 19, 033001 (2017).

    Article  Google Scholar 

  13. 13.

    Satzinger, J. et al. Quantum control of surface acoustic-wave phonons. Nature 563, 661–665 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    Chu, Y. et al. Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator. Nature 563, 666–670 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    Montinaro, M. et al. Quantum dot opto-mechanics in a fully self-assembled nanowire. Nano Lett. 14, 4454–4460 (2014).

    Article  Google Scholar 

  16. 16.

    Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article  Google Scholar 

  17. 17.

    Munsch, M. et al. Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a Gaussian optical beam. Phys. Rev. Lett. 110, 177402 (2013).

    Article  Google Scholar 

  18. 18.

    Metcalfe, M., Carr, S. M., Muller, A., Solomon, G. S. & Lawall, J. Resolved sideband emission of InAs/GaAs quantum dots strained by surface acoustic waves. Phys. Rev. Lett. 105, 037401 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    Schülein, F. J. R. et al. Fourier synthesis of radiofrequency nanomechanical pulses with different shapes. Nat. Nanotechnol. 10, 512–516 (2015).

    Article  Google Scholar 

  20. 20.

    Golter, D. A. et al. Coupling a surface acoustic wave to an electron spin in diamond via a dark state. Phys. Rev. X 6, 041060 (2016).

    Google Scholar 

  21. 21.

    Carter, S. G. et al. Spin-mechanical coupling of an InAs quantum dot embedded in a mechanical resonator. Phys. Rev. Lett. 121, 246801 (2018).

    CAS  Article  Google Scholar 

  22. 22.

    Carter, S. G. et al. Tunable coupling of a double quantum dot spin system to a mechanical resonator. Nano Lett. 19, 6166–6172 (2019).

    CAS  Article  Google Scholar 

  23. 23.

    Auffèves, A. & Richard, M. Optical driving of macroscopic mechanical motion by a single two-level system. Phys. Rev. A 90, 023818 (2014).

    Article  Google Scholar 

  24. 24.

    Besombes, L., Kheng, K., Marsal, L. & Mariette, H. Acoustic phonon broadening mechanism in single quantum dot emission. Phys. Rev. B 63, 155307 (2001).

    Article  Google Scholar 

  25. 25.

    Munsch, M. et al. Resonant driving of a single photon emitter embedded in a mechanical oscillator. Nat. Commun. 8, 76 (2017).

    Article  Google Scholar 

  26. 26.

    Artioli, A. et al. Design of quantum dot–nanowire single-photon sources that are immune to thermomechanical decoherence. Phys. Rev. Lett. 123, 247403 (2019).

    CAS  Article  Google Scholar 

  27. 27.

    Garcia-Sanchez, D. et al. Acoustic confinement in superlattice cavities. Phys. Rev. A 94, 033813 (2016).

    Article  Google Scholar 

  28. 28.

    Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J. & Painter, O. Optomechanical crystals. Nature 462, 78–82 (2009).

    CAS  Article  Google Scholar 

  29. 29.

    Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015).

    Article  Google Scholar 

  30. 30.

    Gavartin, E. et al. Optomechanical coupling in a two-dimensional photonic crystal defect cavity. Phys. Rev. Lett. 106, 203902 (2011).

    CAS  Article  Google Scholar 

  31. 31.

    Esmann, M. et al. Brillouin scattering in hybrid optophononic Bragg micropillar resonators at 300 GHz. Optica 6, 854–859 (2019).

    CAS  Article  Google Scholar 

  32. 32.

    Vogele, A. et al. Quantum dot optomechanics in suspended nanophononic strings. Adv. Quantum Tech. 3, 1900102 (2020).

    CAS  Article  Google Scholar 

  33. 33.

    Sun, S., Kim, H., Solomon, G. S. & Waks, E. Strain tuning of a quantum dot strongly coupled to a photonic crystal cavity. Appl. Phys. Lett. 103, 151102 (2013).

    Article  Google Scholar 

  34. 34.

    Elouard, C., Richard, M. & Auffèves, A. Reversible work extraction in a hybrid opto-mechanical system. New J. Phys. 17, 055018 (2015).

    Article  Google Scholar 

  35. 35.

    Rossnagel, J. et al. A single-atom heat engine. Science 352, 325–329 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    Klaers, J. Landauer’s erasure principle in a squeezed thermal memory. Phys. Rev. Lett. 122, 040602 (2019).

    CAS  Article  Google Scholar 

  37. 37.

    Majumdar, A., Kim, E. D. & Vučković, J. Effect of photogenerated carriers on the spectral diffusion of a quantum dot coupled to a photonic crystal cavity. Phys. Rev. B 84, 195304 (2011).

    Article  Google Scholar 

  38. 38.

    Marzin, J.-Y., Gérard, J.-M., Izraël, A. & Barrier, D. Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs. Phys. Rev. Lett. 73, 716–719 (1994).

    CAS  Article  Google Scholar 

  39. 39.

    de Assis, P. L. et al. Strain-gradient position mapping of semiconductor quantum dots. Phys. Rev. Lett. 118, 117401 (2017).

    Article  Google Scholar 

Download references


J.K., N.V., A.A., J.C., J.-M.G., P.V. and J.-P.P. are supported by the Agence Nationale de la Recherche (project QDOT ANR-16-CE09-0010). N.V. is supported by Fondation Nanosciences. P.-L.d.A. thanks Université Grenoble Alpes and CNRS for supporting visits as an invited scientist. A.A. is supported by the Agence Nationale de la Recherche under the Research Collaborative Project Qu-DICE (ANR-PRC-CES47). M.R. is supported by the Agence Nationale de la Recherche under the Research Collaborative Project QFL (ANR-16-CE30-0021). B.P. is supported by the Agence Nationale de la Recherche under the project QCForce (ANR-JCJC-2016-CE09). O.A. acknowledges support from ERC Atto-Zepto CoG 820033. P.V. acknowledges support from the ERC StG 758794 ‘Q-ROOT’. Sample fabrication was carried out in the ‘Plateforme Technologique Amont’ and in CEA/LETI/DOPT clean rooms.

Author information




J.K. and N.V. performed the experiments with the help of B.B. and P.-L.d.A.; J.K. and L.M.L. wrote the experimental codes. J.K. performed the data analysis. O.B. did the photothermal analysis of the system. A.A. and M.R. provided theoretical support. J.C. and J.-M.G. designed and fabricated the samples. J.K., B.P., O.A., P.V. and J.-P.P. proposed the experimental procedures. J.-P.P. supervised the project and wrote the manuscript with the help of A.A., M.R., J.C., J.-M.G., B.P., O.A. and P.V.

Corresponding author

Correspondence to Jean-Philippe Poizat.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Maurice Skolnick and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections I–XI.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kettler, J., Vaish, N., de Lépinay, L.M. et al. Inducing micromechanical motion by optical excitation of a single quantum dot. Nat. Nanotechnol. 16, 283–287 (2021).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research