Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Deterministic fabrication of arbitrary vertical heterostructures of two-dimensional Ruddlesden–Popper halide perovskites


Ruddlesden–Popper lead halide perovskites have emerged as a new class of two-dimensional semiconductors with tunable optoelectronic properties, potentially offering unlimited heterostructure configurations for exploration. However, the practical realization of such heterostructures is challenging because of the difficulty in achieving controllable direct synthesis or van der Waals integration of halide perovskites due to their mobile and fragile crystal lattices. Here we report direct growth of large-area nanosheets of diverse phase-pure Ruddlesden–Popper perovskites with thicknesses down to one monolayer at the solution–air interface and a reliable approach for gently transferring and stacking these nanosheets. These advances enable the deterministic fabrication of arbitrary vertical heterostructures and multi-heterostructures of Ruddlesden–Popper perovskites with greater structural degrees of freedom that define the electronic structures of the heterojunctions. Such rationally designed heterostructures exhibit interesting interlayer properties, such as interlayer carrier transfer and reduction of the photoluminescence linewidth, and could enable the exploration of exciton physics and optoelectronic applications.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Floating growth of large-area nanosheets of various phases of 2D RP perovskites.
Fig. 2: Pick-up of the floating RP perovskite thin sheets and characterization after transfer onto Si/SiO2 substrates.
Fig. 3: Fabrication and characterization of several types of vertical heterostructure of 2D RP perovskites.
Fig. 4: Fabrication and characterization of a (BA)2PbI4/(BA)2(MA)2Pb3I10/(BA)2(MA)Pb2I7 multi-heterostructure.

Data availability

The data presented in the Supplementary Information that support the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.


  1. Mao, L., Stoumpos, C. C. & Kanatzidis, M. G. Two-dimensional hybrid halide perovskites: principles and promises. J. Am. Chem. Soc. 141, 1171–1190 (2019).

    CAS  Google Scholar 

  2. Fu, Y. et al. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 4, 169–188 (2019).

    CAS  Google Scholar 

  3. Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391–402 (2015).

    CAS  Google Scholar 

  4. Katan, C., Mercier, N. & Even, J. Quantum and dielectric confinement effects in lower-dimensional hybrid perovskite semiconductors. Chem. Rev. 119, 3140–3192 (2019).

    CAS  Google Scholar 

  5. Charbonneau, S., Thewalt, M. L., Koteles, E. S. & Elman, B. Transformation of spatially direct to spatially indirect excitons in coupled double quantum wells. Phys. Rev. B 38, 6287–6290 (1988).

    CAS  Google Scholar 

  6. Golub, J. E., Kash, K., Harbison, J. P. & Florez, L. T. Long-lived spatially indirect excitons in coupled GaAs/AlxGa1-xAs quantum wells. Phys. Rev. B 41, 8564–8567 (1990).

    CAS  Google Scholar 

  7. Butov, L. V., Zrenner, A., Abstreiter, G., Bohm, G. & Weimann, G. Condensation of indirect excitons in coupled AlAs/GaAs quantum wells. Phys. Rev. Lett. 73, 304–307 (1994).

    CAS  Google Scholar 

  8. Butov, L. V. et al. Stimulated scattering of indirect excitons in coupled quantum wells: signature of a degenerate Bose-gas of excitons. Phys. Rev. Lett. 86, 5608–5611 (2001).

    CAS  Google Scholar 

  9. Blancon, J. C. et al. Scaling law for excitons in 2D perovskite quantum wells. Nat. Commun. 9, 2254 (2018).

    Google Scholar 

  10. Leng, K. et al. Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation. Nat. Mater. 17, 908–914 (2018).

    CAS  Google Scholar 

  11. Wang, J. et al. Room temperature coherently coupled exciton-polaritons in two-dimensional organic-inorganic perovskite. ACS Nano 12, 8382–8389 (2018).

    CAS  Google Scholar 

  12. Dou, L. T. et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 349, 1518–1521 (2015).

    CAS  Google Scholar 

  13. Gao, Y. et al. Molecular engineering of organic-inorganic hybrid perovskites quantum wells. Nat. Chem. 11, 1151–1157 (2019).

    CAS  Google Scholar 

  14. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    CAS  Google Scholar 

  15. Liu, Y., Huang, Y. & Duan, X. F. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).

    CAS  Google Scholar 

  16. Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004–1015 (2018).

    CAS  Google Scholar 

  17. Mak, K. F. & Shan, J. Opportunities and challenges of interlayer exciton control and manipulation. Nat. Nanotechnol. 13, 974–976 (2018).

    CAS  Google Scholar 

  18. Wang, J. et al. Controllable synthesis of two-dimensional Ruddlesden-Popper-type perovskite heterostructures. J. Phys. Chem. Lett. 8, 6211–6219 (2017).

    CAS  Google Scholar 

  19. Wang, J. et al. Controllable growth of centimeter-sized 2D perovskite heterostructures for highly narrow dual-band photodetectors. ACS Nano 13, 5473–5484 (2019).

    CAS  Google Scholar 

  20. Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016).

    CAS  Google Scholar 

  21. Proppe, A. H. et al. Synthetic control over quantum well width distribution and carrier migration in low-dimensional perovskite photovoltaics. J. Am. Chem. Soc. 140, 2890–2896 (2018).

    CAS  Google Scholar 

  22. Wang, N. N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photon. 10, 699–704 (2016).

    CAS  Google Scholar 

  23. Fu, Y. et al. Multicolor heterostructures of two-dimensional layered halide perovskites that show interlayer energy transfer. J. Am. Chem. Soc. 140, 15675–15683 (2018).

    CAS  Google Scholar 

  24. Zhu, H. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636–642 (2015).

    CAS  Google Scholar 

  25. Ma, D. et al. Single-crystal microplates of two-dimensional organic–inorganic lead halide layered perovskites for optoelectronics. Nano Res. 10, 2117–2129 (2017).

    CAS  Google Scholar 

  26. Pan, D. et al. Visualization and studies of ion-diffusion kinetics in cesium lead bromide perovskite nanowires. Nano Lett. 18, 1807–1813 (2018).

    CAS  Google Scholar 

  27. Lai, M. L. et al. Intrinsic anion diffusivity in lead halide perovskites is facilitated by a soft lattice. Proc. Natl Acad. Sci. USA 115, 11929–11934 (2018).

    CAS  Google Scholar 

  28. Shi, E. Z. et al. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature 580, 614–620 (2020).

    CAS  Google Scholar 

  29. Meng, F., Morin, S. A., Forticaux, A. & Jin, S. Screw dislocation driven growth of nanomaterials. Acc. Chem. Res. 46, 1616–1626 (2013).

    CAS  Google Scholar 

  30. Liang, D. et al. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. ACS Nano 10, 6897–6904 (2016).

    CAS  Google Scholar 

  31. Gong, X. W. et al. Electron-phonon interaction in efficient perovskite blue emitters. Nat. Mater. 17, 550–556 (2018).

    CAS  Google Scholar 

  32. Meitl, M. A. et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 5, 33–38 (2005).

    Google Scholar 

  33. Blake, P. et al. Making graphene visible. Appl. Phys. Lett. 91, 063124 (2007).

    Google Scholar 

  34. Haigh, S. J. et al. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11, 764–767 (2012).

    CAS  Google Scholar 

  35. Tu, Q. et al. Out-of-plane mechanical properties of 2D hybrid organic-inorganic perovskites by nanoindentation. ACS Appl. Mater. Interfaces 10, 22167–22173 (2018).

    CAS  Google Scholar 

  36. Lin, Y. et al. Suppressed ion migration in low-dimensional perovskites. ACS Energy Lett. 2, 1571–1572 (2017).

    CAS  Google Scholar 

  37. Mauck, C. M. & Tisdale, W. A. Excitons in 2D organic–inorganic halide perovskites. Trends Chem. 1, 380–393 (2019).

    CAS  Google Scholar 

  38. Zhang, S. et al. Synthesis and optical properties of novel organic–inorganic hybrid nanolayer structure semiconductors. Acta Mater. 57, 3301–3309 (2009).

    CAS  Google Scholar 

  39. Ni, L. M. et al. Real-time observation of exciton-phonon coupling dynamics in self-assembled hybrid perovskite quantum wells. ACS Nano 11, 10834–10843 (2017).

    CAS  Google Scholar 

  40. Fu, Y. et al. Incorporating large A cations into lead iodide perovskite cages: relaxed Goldschmidt tolerance factor and impact on exciton-phonon interaction. ACS Cent. Sci. 5, 1377–1386 (2019).

    CAS  Google Scholar 

  41. Herz, L. M. How lattice dynamics moderate the electronic properties of metal-halide perovskites. J. Phys. Chem. Lett. 9, 6853–6863 (2018).

    CAS  Google Scholar 

  42. Hautzinger, M. P. et al. Band edge tuning of two-dimensional Ruddlesden–Popper perovskites by A cation size revealed through nanoplates. ACS Energy Lett. 5, 1430–1437 (2020).

    CAS  Google Scholar 

  43. Spanopoulos, I. et al. Uniaxial expansion of the 2D Ruddlesden-Popper perovskite family for improved environmental stability. J. Am. Chem. Soc. 141, 5518–5534 (2019).

    CAS  Google Scholar 

  44. Zhao, Y. & Jin, S. Controllable water vapor assisted chemical vapor transport synthesis of WS2–MoS2 heterostructure. ACS Mater. Lett. 2, 42–48 (2019).

    Google Scholar 

  45. Chen, Y. et al. Robust interlayer coupling in two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano 14, 10258–10264 (2020).

    CAS  Google Scholar 

  46. Roy, S. et al. Measurement of quantum yields of monolayer TMDs using dye-dispersed PMMA thin films. Nanomaterials 10, 1032 (2020).

    CAS  Google Scholar 

Download references


This work is supported by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award Number DE-FG02-09ER46664.

Author information

Authors and Affiliations



S.J., Y.F. and D.P. conceived the research. D.P. and Y.F. designed and conducted the experiments and analysed the experimental results. N.S. and D.D.K. conducted PLE and TRPL measurements and analysed the results. Y.Z. designed and built the transfer stage. D.J.M. and J.C.W. performed PL line profile analysis and assisted with the analysis of various spectroscopic results. C.R.R. helped with PL mapping. S.J. and J.C.W. supervised the project. D.P., Y.F. and S.J. co-wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Yongping Fu, John C. Wright or Song Jin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Dehui Li, Biwu Ma and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–22 and Table 1.

Supplementary Video 1

Supplementary Video 1 shows the growth of the nanosheets of (HA)2PbI4 in real time as they are floating on the precursor solution droplet. Layer-by-layer growth propagation across the whole sheets could be observed.

Supplementary Video 2

Supplementary Video 2 shows the growth of (HA)2(FA)Pb2I7. The video was recorded in real time in dark field with a 232 μm × 174 μm field of view. As the growth proceeded further, the thick spiral plate formed through dislocation-driven growth thickened, but the thin sheets next to it shrunk in size, in an Ostwald ripening process.

Source data

Source Data Fig. 1

Experimental data points of the PL spectra shown in Fig. 1c.

Source Data Fig. 2

Experimental data points of the extracted AFM height profiles shown in Fig. 2g–k.

Source Data Fig. 3

Experimental data points of the PL spectra shown in Fig. 3a(iv), b(iv) and c(iv).

Source Data Fig. 4

Experimental data points of the PL spectra shown in Fig. 4g.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, D., Fu, Y., Spitha, N. et al. Deterministic fabrication of arbitrary vertical heterostructures of two-dimensional Ruddlesden–Popper halide perovskites. Nat. Nanotechnol. 16, 159–165 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research