Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nanoscale engineering of catalytic materials for sustainable technologies

Abstract

Nanostructured materials of diverse architecture are ubiquitous in industrial catalysis. They offer exciting prospects to tackle various sustainability challenges faced by society. Since the introduction of the concept a century ago, researchers aspire to control the chemical identity, local environment and electronic properties of active sites on catalytic surfaces to optimize their reactivity in given applications. Nowadays, numerous strategies exist to tailor these characteristics with varying levels of atomic precision. Making headway relies upon the existence of analytical approaches able to resolve relevant structural features and remains challenging due to the inherent complexity even of the simplest heterogeneous catalysts, and to dynamic effects often occurring under reaction conditions. Computational methods play a complementary and ever-increasing role in pushing forward the design. Here, we examine how nanoscale engineering can enhance the selectivity and stability of catalysts. We highlight breakthroughs towards their commercialization and identify directions to guide future research and innovation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nanostructuring metal-based catalysts.
Fig. 2: Surface and interface engineering of catalysts for enhanced selectivity.
Fig. 3: Solving long-standing catalyst stability challenges through nanostructuring.
Fig. 4: Challenges in the design and implementation of nanostructured catalysts for sustainable technologies.

Similar content being viewed by others

References

  1. Lanzafame, P., Perathoner, S., Centi, G., Gross, S. & Hensen, E. J. M. Grand challenges for catalysis in the science and technology roadmap on catalysis for Europe: moving ahead for a sustainable future. Catal. Sci. Technol. 7, 5182–5194 (2017).

    CAS  Google Scholar 

  2. Andersen, S. Z. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 570, 504–508 (2019).

    CAS  Google Scholar 

  3. Berzelius, J. J. Quelques idées sur une nouvelle force agissant dans les combinaisons des corps organiques. Ann. Chim. 61, 146–151 (1836).

    Google Scholar 

  4. Taylor, H. S. A theory of the catalytic surface. Proc. R. Soc. London Ser. A 108, 105–111 (1925).

    CAS  Google Scholar 

  5. Nørskov, J. K. et al. The nature of the active site in heterogeneous metal catalysis. Chem. Soc. Rev. 37, 2163–2171 (2008).

    Google Scholar 

  6. Boudart, M. Catalysis by supported metals. Adv. Catal. 20, 153–166 (1969).

    CAS  Google Scholar 

  7. Blakely, D. W. & Somorjai, G. A. The dehydrogenation and hydrogenolysis of cyclohexane and cyclohexene on stepped (high miller index) platinum surfaces. J. Catal. 42, 181–196 (1976).

    CAS  Google Scholar 

  8. Zambelli, T., Wintterlin, J., Trost, J. & Ertl, G. Identification of the "active sites" of a surface-catalyzed reaction. Science 273, 1688–1690 (1996).

    CAS  Google Scholar 

  9. Thomas, J. M. The ineluctable need for in situ methods of characterising solid catalysts as a prerequisite to engineering active sites. Chem. Eur. J. 3, 1557–1562 (1997).

    CAS  Google Scholar 

  10. Weckhuysen, B. M. Snapshots of a working catalyst: Possibilities and limitations of in situ spectroscopy in the field of heterogeneous catalysis. Chem. Commun. 97–110 (2002).

  11. Hashmi, A. S. K. & Hutchings, G. J. Gold catalysis. Angew. Chem. Int. Ed. 45, 7896–7936 (2006).

    Google Scholar 

  12. Liu, X. & Dai, L. Carbon-based metal-free catalysts. Nat. Rev. Mater. 1, 16064 (2016).

    CAS  Google Scholar 

  13. Allard, L. F. et al. Evolution of gold structure during thermal treatment of Au/FeOx catalysts revealed by aberration-corrected electron microscopy. J. Electron Microsc. 58, 199–212 (2009).

    CAS  Google Scholar 

  14. Schauermann, S., Nilius, N., Shaikhutdinov, S. & Freund, H.-J. Nanoparticles for heterogeneous catalysis: New mechanistic insights. Acc. Chem. Res. 46, 1673–1681 (2013).

    CAS  Google Scholar 

  15. Tsung, C.-K. et al. Sub-10 nm platinum nanocrystals with size and shape control: catalytic study for ethylene and pyrrole hydrogenation. J. Am. Chem. Soc. 131, 5816–5822 (2009).

    CAS  Google Scholar 

  16. Cargnello, M. Colloidal nanocrystals as building blocks for well-defined heterogeneous catalysts. Chem. Mater. 31, 576–596 (2019).

    CAS  Google Scholar 

  17. Zhou, K. & Li, Y. Catalysis based on nanocrystals with well-defined facets. Angew. Chem. Int. Ed. 51, 602–613 (2012).

    CAS  Google Scholar 

  18. Wu, Y., Wang, D. & Li, Y. Nanocrystals from solutions: Catalysts. Chem. Soc. Rev. 43, 2112–2124 (2014).

    CAS  Google Scholar 

  19. Wu, B. & Zheng, N. Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications. Nano Today 8, 168–197 (2013).

    Google Scholar 

  20. Xie, C., Niu, Z., Kim, D., Li, M. & Yang, P. Surface and interface control in nanoparticle catalysis. Chem. Rev. 120, 1184–1249 (2020).

    CAS  Google Scholar 

  21. Cao, S., Franklin, T., Tang, Y., Li, Y. & Yu, J. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem. Soc. Rev. 45, 4747–4765 (2016).

    CAS  Google Scholar 

  22. An, K. & Somorjai, G. A. Size and shape control of metal nanoparticles for reaction selectivity in catalysis. ChemCatChem 4, 1512–1524 (2012).

    CAS  Google Scholar 

  23. Kuhn, J. N., Huang, W., Tsung, C.-K., Zhang, Y. & Somorjai, G. A. Structure sensitivity of carbon−nitrogen ring opening: impact of platinum particle size from below 1 to 5 nm upon pyrrole hydrogenation product selectivity over monodisperse platinum nanoparticles loaded onto mesoporous silica. J. Am. Chem. Soc. 130, 14026–14027 (2008).

    CAS  Google Scholar 

  24. Zhao, X., Zhao, Y., Fu, G. & Zheng, N. Origin of the facet dependence in the hydrogenation catalysis of olefins: Experiment and theory. Chem. Commun. 51, 12016–12019 (2015).

    CAS  Google Scholar 

  25. Ni, B. & Wang, X. Face the edges: Catalytic active sites of nanomaterials. Adv. Sci. 2, 1500085 (2015).

    Google Scholar 

  26. Tian, N., Zhou, Z.-Y., Sun, S.-G., Ding, Y. & Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316, 732–735 (2007).

    CAS  Google Scholar 

  27. Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007).

    CAS  Google Scholar 

  28. Xie, X., Li, Y., Liu, Z.-Q., Haruta, M. & Shen, W. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458, 746–749 (2009).

    CAS  Google Scholar 

  29. Zhong, L. et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Nature 538, 84–87 (2016).

    CAS  Google Scholar 

  30. Cargnello, M. et al. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 341, 771–773 (2013).

    CAS  Google Scholar 

  31. Chen, G. et al. Interfacial effects in iron-nickel hydroxide–platinum nanoparticles enhance catalytic oxidation. Science 344, 495–499 (2014). Demonstrates the concept of using inverse structures — depositing common support materials on precious metals — to develop a stable and active catalyst for CO oxidation based on PtFeNi alloy nanocrystals.

    CAS  Google Scholar 

  32. Cao, L. et al. Atomically-dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 565, 631–635 (2019).

    CAS  Google Scholar 

  33. Jadzinsky, P. D., Calero, G., Ackerson, C. J., Bushnell, D. A. & Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 318, 430–433 (2007).

    CAS  Google Scholar 

  34. Yang, H. All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures. Nat. Commun. 4, 2422 (2013).

    Google Scholar 

  35. Wang, Y. et al. Atomically precise alkynyl-protected metal nanoclusters as a model catalyst: Observation of promoting effect of surface ligands on catalysis by metal nanoparticles. J. Am. Chem. Soc. 138, 3278–3281 (2016).

    CAS  Google Scholar 

  36. Ichikawa, M., Rao, L., Ito, T. & Fukuoka, A. Ensemble and ligand effects in selective alkane hydrogenolysis catalysed on well characterised RhIr and RhFe bimetallic clusters inside NaY zeolite. Faraday Discuss. Chem. Soc. 87, 321–336 (1989).

    CAS  Google Scholar 

  37. Liu, L. et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 16, 132–138 (2017).

    CAS  Google Scholar 

  38. Serna, P. & Gates, B. C. Zeolite-supported rhodium complexes and clusters: Switching catalytic selectivity by controlling structures of essentially molecular species. J. Am. Chem. Soc. 133, 4714–4717 (2011).

    CAS  Google Scholar 

  39. Qin, R., Liu, P., Fu, G. & Zheng, N. Strategies for stabilizing atomically dispersed metal catalysts. Small Methods 2, 1700286 (2018).

    Google Scholar 

  40. Liu, P. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–800 (2016).

    CAS  Google Scholar 

  41. Taccardi, N. et al. Gallium-rich Pd–Ga phases as supported liquid metal catalysts. Nat. Chem. 9, 862–867 (2017).

    CAS  Google Scholar 

  42. Somorjai, G. A. & Park, J. Y. Molecular factors of catalytic selectivity. Angew. Chem. Int. Ed. 47, 9212–9228 (2008).

    CAS  Google Scholar 

  43. Vilé, G., Almora-Barrios, N., Mitchell, S., López, N. & Pérez-Ramírez, J. From the Lindlar catalyst to supported ligand-modified palladium nanoparticles: Selectivity patterns and accessibility constraints in the continuous-flow three-phase hydrogenation of acetylenic compounds. Chem. Eur. J. 20, 5926–5937 (2014).

    Google Scholar 

  44. Witte, P. T. et al. BASF NanoSelect™ technology: Innovative supported Pd- and Pt-based catalysts for selective hydrogenation reactions. Top. Catal. 55, 505–511 (2012).

    CAS  Google Scholar 

  45. Marshall, S. T. et al. Controlled selectivity for palladium catalysts using self-assembled monolayers. Nat. Mater. 9, 853–858 (2010).

    CAS  Google Scholar 

  46. Pang, S. H., Schoenbaum, C. A., Schwartz, D. K. & Medlin, J. W. Directing reaction pathways by catalyst active-site selection using self-assembled monolayers. Nat. Commun. 4, 2448 (2013).

    Google Scholar 

  47. Albani, D. et al. Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation. Nat. Commun. 9, 2634 (2018).

    Google Scholar 

  48. Feng, Q. et al. Isolated single-atom Pd sites in intermetallic nanostructures: high catalytic selectivity for semihydrogenation of alkynes. J. Am. Chem. Soc. 139, 7294–7301 (2017).

    CAS  Google Scholar 

  49. Han, A. et al. Isolating contiguous Pt atoms and forming Pt-Zn intermetallic nanoparticles to regulate selectivity in 4-nitrophenylacetylene hydrogenation. Nat. Commun. 10, 3787 (2019).

    Google Scholar 

  50. Jirkovský, J. S. et al. Single atom hot-spots at Au–Pd nanoalloys for electrocatalytic H2O2 production. J. Am. Chem. Soc. 133, 19432–19441 (2011).

    Google Scholar 

  51. Marcinkowski, M. D. et al. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation. Nat. Chem. 10, 325–332 (2018).

    CAS  Google Scholar 

  52. Marcinkowski, M. D. et al. Selective formic acid dehydrogenation on Pt-Cu single-atom alloys. ACS Catal. 7, 413–420 (2017).

    CAS  Google Scholar 

  53. Kyriakou, G. et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335, 1209–1212 (2012).

    CAS  Google Scholar 

  54. Jiang, L. et al. Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts. Nat. Nanotechnol. 15, 848–853 (2020). Demonstrates the facet dependence of spillover hydrogenation by dispersing Pd atoms onto Cu nanomaterials with different exposed facets.

    CAS  Google Scholar 

  55. Tauster, S. J., Fung, S. C., Baker, R. T. K. & Horsley, J. A. Strong interactions in supported-metal catalysts. Science 211, 1121–1125 (1981).

    CAS  Google Scholar 

  56. Macino, M. et al. Tuning of catalytic sites in Pt/TiO2 catalysts for the chemoselective hydrogenation of 3-nitrostyrene. Nat. Catal. 2, 873–881 (2019).

    CAS  Google Scholar 

  57. van Deelen, T. W., Hernández Mejía, C. & de Jong, K. P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2, 955–970 (2019).

    Google Scholar 

  58. Vogt, C. et al. Understanding carbon dioxide activation and carbon–carbon coupling over nickel. Nat. Commun. 10, 5330 (2019).

    Google Scholar 

  59. Wang, Y. et al. Chemoselective hydrogenation of nitroaromatics at the nanoscale iron(III)-OH-platinum interface. Angew. Chem. Int. Ed. 59, 12736–12740 (2020).

    CAS  Google Scholar 

  60. Lin, L. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 544, 80–83 (2017).

    CAS  Google Scholar 

  61. Yao, S. et al. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science 357, 389–393 (2017). Exploit interfacial effects to create layered gold clusters on molybedenum carbide, evidencing high performance in the low-temperature water-gas shift reaction.

    CAS  Google Scholar 

  62. Lin, L. et al. A highly CO-tolerant atomically dispersed Pt catalyst for chemoselective hydrogenation. Nat. Nanotechnol. 14, 354–361 (2019).

    CAS  Google Scholar 

  63. Zhang, J. et al. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 1, 985–992 (2018).

    CAS  Google Scholar 

  64. Liu, P. & Zheng, N. Coordination chemistry of atomically dispersed catalysts. Natl. Sci. Rev. 5, 636–638 (2018).

    CAS  Google Scholar 

  65. Liu, K. et al. Cu2O-supported atomically dispersed Pd catalysts for semihydrogenation of terminal alkynes: Critical role of oxide supports. CCS Chem. 1, 207–214 (2019).

    CAS  Google Scholar 

  66. Lu, G. et al. Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 4, 310–316 (2012).

    CAS  Google Scholar 

  67. Zhao, M. et al. Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nature 539, 76–80 (2016).

    CAS  Google Scholar 

  68. Wu, B., Huang, H., Yang, J., Zheng, N. & Fu, G. Selective hydrogenation of α, β-unsaturated aldehydes catalyzed by amine-capped platinum-cobalt nanocrystals. Angew. Chem. Int. Ed. 51, 3440–3443 (2012).

    CAS  Google Scholar 

  69. Zhao, X. et al. Thiol treatment creates selective palladium catalysts for semihydrogenation of internal alkynes. Chem 4, 1080–1091 (2018).

    CAS  Google Scholar 

  70. Riscoe, A. R. et al. Transition state and product diffusion control by polymer–nanocrystal hybrid catalysts. Nat. Catal. 2, 852–863 (2019). Report a modular approach for the synthesis of polymer–nanocrystal hybrids, where the polymer chemistry and morphology control the performance, affecting the transition state for CO oxidation and controlling the transport of CO2 away from active sites.

    CAS  Google Scholar 

  71. Lari, G. M., Puértolas, B., Shahrokhi, M., López, N. & Pérez-Ramírez, J. Hybrid palladium nanoparticles for direct hydrogen peroxide synthesis: the key role of the ligand. Angew. Chem. Int. Ed. 56, 1775–1779 (2017).

    CAS  Google Scholar 

  72. Schrader, I., Warneke, J., Backenköhler, J. & Kunz, S. Functionalization of platinum nanoparticles with L-proline: Simultaneous enhancements of catalytic activity and selectivity. J. Am. Chem. Soc. 137, 905–912 (2015).

    CAS  Google Scholar 

  73. Chen, G. et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat. Mater. 15, 564–569 (2016).

    CAS  Google Scholar 

  74. Goodman, E. D., Schwalbe, J. A. & Cargnello, M. Mechanistic understanding and the rational design of sinter-resistant heterogeneous catalysts. ACS Catal. 7, 7156–7173 (2017).

    CAS  Google Scholar 

  75. Amrute, A. P., Mondelli, C., Schmidt, T., Hauert, R. & Pérez‐Ramírez, J. Industrial RuO2‐based Deacon catalysts: Carrier stabilization and active phase content optimization. ChemCatChem 5, 748–756 (2013).

    CAS  Google Scholar 

  76. Kaiser, S. K. et al. Nanostructuring unlocks high performance of platinum single-atom catalysts for stable vinyl chloride production. Nat. Catal. 3, 376–385 (2020). Demonstrates the impact of metal speciation for acetylene hydrogenation, permitting the design of the first stable heterogeneous catalyst.

    CAS  Google Scholar 

  77. Lang, R. et al. Non defect-stabilized thermally stable single-atom catalyst. Nat Commun. 10, 234 (2019).

    Google Scholar 

  78. Zhai, Y. et al. Alkali-stabilized Pt-OHx species catalyze low-temperature water-gas shift reactions. Science 329, 1633–1636 (2010).

    CAS  Google Scholar 

  79. Matsubu, J. et al. Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts. Nat. Chem. 9, 120–127 (2017). Uses in situ techniques to show that adsorbates on oxide supports induce oxygen-vacancy formation, which drives migration of the adsorbate-functionalized oxide onto the metal.

    CAS  Google Scholar 

  80. Li, H. et al. Tuning the potential energy landscape to suppress Ostwald ripening in surface-supported catalyst systems. Nano Lett. 19, 8388–8398 (2019). 12.

    CAS  Google Scholar 

  81. Liu, L. et al. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nat. Mater. 18, 866–873 (2019).

    CAS  Google Scholar 

  82. Frei, M. S. et al. Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO2 hydrogenation. Nat. Commun. 10, 3377 (2019).

    Google Scholar 

  83. Xu, C. et al. Interfacing with silica boosts the catalysis of copper. Nat. Commun. 9, 3367 (2018).

    Google Scholar 

  84. Prieto, G., Zečević, J., Friedrich, H., De Jong, K. P. & De Jongh, P. E. Towards stable catalysts by controlling collective properties of supported metal nanoparticles. Nat. Mater. 12, 34–39 (2013).

    CAS  Google Scholar 

  85. Ellis, P. R., Enache, D. I., James, D. W., Jones, D. S. & Kelly, G. J. A robust and precious metal-free high performance cobalt Fischer–Tropsch catalyst. Nat. Catal. 2, 623–631 (2019).

    CAS  Google Scholar 

  86. Goodman, E. D. et al. Catalyst deactivation via decomposition into single atoms and the role of metal loading. Nat. Catal. 2, 748–755 (2019).

    CAS  Google Scholar 

  87. Sun, G. et al. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat. Commun. 9, 4454 (2018).

    Google Scholar 

  88. Akri, M. et al. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming. Nat. Commun. 10, 5181 (2019).

    Google Scholar 

  89. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    CAS  Google Scholar 

  90. Lin, L. et al. A highly CO-tolerant atomically dispersed Pt catalyst for chemoselective hydrogenation. Nat. Nanotechnol. 14, 354–361 (2019).

    CAS  Google Scholar 

  91. Chen, Z. et al. A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nat. Nanotechnol. 13, 702–707 (2018). First stable single-atom catalyst demonstrating superior performance to homogeneous analogues in Suzuki couplings. Introduces the concept of adaptative coordination.

    CAS  Google Scholar 

  92. Shen, H. et al. Highly robust but surface-active: an N-heterocyclic carbene-stabilized Au25 nanocluster. Angew. Chem. Int. Ed. 58, 17731–17735 (2019).

    CAS  Google Scholar 

  93. Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

    Google Scholar 

  94. Xu, H., Cheng, D., Cao, D. & Xeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 1, 339–348 (2018).

    CAS  Google Scholar 

  95. Vorobyeva, E. et al. Atom-by-atom resolution of structure-function relations over low-nuclearity metal catalysts. Angew. Chem. Int. Ed. 58, 8724–8729 (2019). Evidences the critical effect of nuclearity and critically discusses the challenges associated with discriminating between atomically-dispersed species.

    CAS  Google Scholar 

  96. Jiao, Y., Zheng, Y., Davey, K. & Qiao, S. Z. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nat. Energy 1, 1–9 (2016).

    Google Scholar 

  97. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355, eaad4998 (2017).

    Google Scholar 

  98. Larrazábal, G. O., Shinagawa, T., Martín, A. J. & Pérez-Ramírez, J. Microfabricated electrodes unravel the role of interfaces in multicomponent copper-based CO2 reduction catalysts. Nat. Commun. 9, 1477 (2018).

    Google Scholar 

  99. Kattel, S., Ramírez, P. J., Chen, J. G., Rodriguez, J. A. & Liu, P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 355, 1296–1299 (2017).

    CAS  Google Scholar 

  100. Tyo, E. & Vajda, S. Catalysis by clusters with precise numbers of atoms. Nat. Nanotechnol. 10, 577–588 (2015).

    CAS  Google Scholar 

  101. Liu, G. et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem. 9, 810–816 (2017).

    CAS  Google Scholar 

  102. Liu, P. et al. A vicinal effect for promoting catalysis of Pd1/TiO2: Supports of atomically dispersed catalysts play more roles than simply serving as ligands. Sci. Bull. 63, 675–682 (2018).

    CAS  Google Scholar 

  103. Avanesian, T. et al. Quantitative and atomic-scale view of CO-induced Pt nanoparticle surface reconstruction at saturation coverage via DFT calculations coupled with in situ TEM and IR. J. Am. Chem. Soc. 139, 4551–4558 (2017).

    CAS  Google Scholar 

  104. Liu, L. et al. Determination of the evolution of heterogeneous single metal atoms and nanoclusters under reaction conditions: Which are the working catalytic sites? ACS Catal. 9, 10626–10639 (2019).

    CAS  Google Scholar 

  105. DeRita, L. et al. Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nat. Mater. 18, 746–751 (2019).

    CAS  Google Scholar 

  106. Chen, P. et al. Spatiotemporal catalytic dynamics within single nanocatalysts revealed by single-molecule microscopy. Chem. Soc. Rev. 43, 1107–1117 (2014).

    CAS  Google Scholar 

  107. Roeffaers, M. B. J. et al. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Nature 439, 572–575 (2006).

    CAS  Google Scholar 

  108. Dong, B. et al. Deciphering nanoconfinement effects on molecular orientation and reaction intermediate by single molecule imaging. Nat. Commun. 10, 4815 (2019).

    Google Scholar 

  109. Pérez-Ramírez, J. & López, N. Strategies to break linear scaling relationships. Nat. Catal. 2, 971–976 (2019).

    Google Scholar 

  110. Tran, K. & Ulissi, Z. W. Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat Catal 1, 696–703 (2018). A fully automated method combining machine learning and optimization to guide electrocatalyst discovery for CO2 reduction and H2 evolution through density functional theory calculations.

    CAS  Google Scholar 

  111. Pašti, I. A. et al. Atomically thin metal films on foreign substrates: from lattice mismatch to electrocatalytic activity. ACS Catal. 9, 3467–3481 (2019).

    Google Scholar 

  112. Daelman, N., Capdevila-Cortada, M. & López, N. Dynamic charge and oxidation state of Pt/CeO2 single-atom catalysts. Nat. Mater. 18, 1215–1221 (2019). An article highlighting a new class of strong metal–support interactions exhibiting well-defined and dynamically interconnected charge states.

    CAS  Google Scholar 

  113. Mitchell, S., Michels, N. L. & Pérez-Ramírez, J. From powder to technical body: the undervalued science of catalyst scale up. Chem. Soc. Rev. 42, 6094–6112 (2013).

    CAS  Google Scholar 

  114. Deng, D. et al. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11, 218 (2016).

    CAS  Google Scholar 

  115. Zheng, Z. et al. Economizing production of diverse 2D layered metal hydroxides for efficient overall water splitting. Small 14, 1800759 (2018).

    Google Scholar 

  116. Martín, A. J. & Pérez-Ramírez, J. Heading to distributed electrocatalytic conversion of small abundant molecules into fuels, chemicals, and fertilizers. Joule 3, 2602–2621 (2019).

    Google Scholar 

  117. González-Garay, A. et al. Plant-to-planet analysis of CO2-based methanol processes. Energy Environ. Sci. 12, 3425–3436 (2019).

    Google Scholar 

  118. Saadun, A. J. et al. Performance of metal-catalyzed hydrodebromination of dibromomethane analyzed by descriptors derived from statistical learning. ACS Catal. 10, 6129–6143 (2020).

    CAS  Google Scholar 

Download references

Acknowledgements

N.Z. acknowledges the support from the National Key R&D Program of China, Ministry of Science and Technology of China (2017YFA0207302), the National Natural Science Foundation of China (21890752, 21731005) and the Tencent Foundation through the XPLORER PRIZE.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nanfeng Zheng or Javier Pérez-Ramírez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Ding Ma, Guoxiu Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitchell, S., Qin, R., Zheng, N. et al. Nanoscale engineering of catalytic materials for sustainable technologies. Nat. Nanotechnol. 16, 129–139 (2021). https://doi.org/10.1038/s41565-020-00799-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-020-00799-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing