Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biomimetic artificial water channel membranes for enhanced desalination


Inspired by biological proteins, artificial water channels (AWCs) can be used to overcome the performances of traditional desalination membranes. Their rational incorporation in composite polyamide provides an example of biomimetic membranes applied under representative reverse osmosis desalination conditions with an intrinsically high water-to-salt permeability ratio. The hybrid polyamide presents larger voids and seamlessly incorporates I–quartet AWCs for highly selective transport of water. These biomimetic membranes can be easily scaled for industrial standards (>m2), provide 99.5% rejection of NaCl or 91.4% rejection of boron, with a water flux of 75 l m−2 h−1 at 65 bar and 35,000 ppm NaCl feed solution, representative of seawater desalination. This flux is more than 75% higher than that observed with current state-of-the-art membranes with equivalent solute rejection, translating into an equivalent reduction of the membrane area for the same water output and a roughly 12% reduction of the required energy for desalination.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Membrane preparation and SEM characterization.
Fig. 2: Morphological TEM characterization of the membranes.
Fig. 3: Performance of the membranes in the desalination of seawater and brackish water.
Fig. 4: Application of the membranes in typical seawater desalination operation.

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.


  1. 1.

    Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).

    Article  Google Scholar 

  2. 2.

    Eliasson, J. The rising pressure of global water shortages. Nature 517, 6–7 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).

    CAS  Article  Google Scholar 

  4. 4.

    Cadotte, J. E., Petersen, R. J., Larson, R. E. & Erickson, E. E. A new thin-film composite seawater reverse osmosis membrane. Desalination 32, 25–31 (1980).

    Article  Google Scholar 

  5. 5.

    Karan, S., Jiang, Z. & Livingston, A. G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 348, 1347–1351 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Chowdhury, M. R., Steffes, J., Huey, B. D. & McCutcheon, J. R. 3D printed polyamide membranes for desalination. Science 361, 682–686 (2018).

    CAS  Article  Google Scholar 

  7. 7.

    Tan, Z., Chen, S., Peng, X., Zhang, L. & Gao, C. Polyamide membranes with nanoscale Turing structures for water purification. Science 360, 518–521 (2018).

    CAS  Article  Google Scholar 

  8. 8.

    Jeong, B. H. et al. Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J. Memb. Sci. 294, 1–7 (2007).

    CAS  Article  Google Scholar 

  9. 9.

    Duan, J. et al. High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8. J. Memb. Sci. 476, 303–310 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Ratto, T. V., Holt, J. K. & Szmodis, A. W. Asymmetric nanotube containing membranes. US patent 7,993,524 (2011).

  11. 11.

    Werber, J. R., Deshmukh, A. & Elimelech, M. The critical need for increased selectivity, not increased water permeability, for desalination membranes. Environ. Sci. Techol. Lett. 3, 112–120 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Agre, P. Aquaporin water channels (Nobel lecture). Angew. Chem. Int. Ed. 43, 4278–4290 (2004).

    CAS  Article  Google Scholar 

  13. 13.

    Eriksson, U. K. et al. Subangstrom resolution X-ray structure details aquaporin–water interactions. Science 340, 1346–1349 (2013).

    Article  Google Scholar 

  14. 14.

    Tang, C. Y., Zhao, Y., Wang, R., Hélix-Nielsen, C. & Fane, A. G. Desalination by biomimetic aquaporin membranes: review of status and prospects. Desalination 308, 34–40 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    Barboiu, M. Artificial water channels. Angew. Chem. Int. Ed. 51, 11674–11676 (2012).

    CAS  Article  Google Scholar 

  16. 16.

    Barboiu, M. & Gilles, A. From natural to bioassisted and biomimetic artificial water channel systems. Acc. Chem. Res. 46, 2814–2823 (2013).

    CAS  Article  Google Scholar 

  17. 17.

    Leduc, Y. et al. Imidazole-quartet water and proton dipolar channels. Angew. Chem. Int. Ed. 50, 11366–11372 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    Hu, X. B., Chen, Z., Tang, G., Hou, J. L. & Li, Z. T. Single-molecular artificial transmembrane water channels. J. Am. Chem. Soc. 134, 8384–8387 (2012).

    CAS  Article  Google Scholar 

  19. 19.

    Si, W. et al. Selective artificial transmembrane channels for protons by formation of water wires. Angew. Chem. Int. Ed. 50, 12564–12568 (2011).

    CAS  Article  Google Scholar 

  20. 20.

    Licsandru, E. et al. Salt-excluding artificial water channels exhibiting enhanced dipolar water and proton translocation. J. Am. Chem. Soc. 138, 5403–5409 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Tunuguntla, R. H. et al. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 357, 792–796 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    Kocsis, I. et al. Oriented chiral water wires in artificial transmembrane channels. Sci. Adv. 4, eaao5603 (2018).

  23. 23.

    Werber, J. R. & Elimelech, M. Permselectivity limits of biomimetic desalination membranes. Sci. Adv. 4, eaar8266 (2018).

    Article  Google Scholar 

  24. 24.

    McGinnis, R. L. et al. Large-scale polymeric carbon nanotube membranes with sub-1.27-nm pores. Sci. Adv. 4, e1700938 (2018).

    Article  Google Scholar 

  25. 25.

    Mi, B. Graphene oxide membranes for ionic and molecular sieving. Science 343, 740–742 (2014).

    CAS  Article  Google Scholar 

  26. 26.

    Yang, Y. et al. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science 364, 1057–1062 (2019).

    CAS  Article  Google Scholar 

  27. 27.

    Shen, Y. X. et al. Achieving high permeability and enhanced selectivity for Angstrom-scale separations using artificial water channel membranes. Nat. Commun. 9, 2294 (2018).

    Article  Google Scholar 

  28. 28.

    Lin, L., Lopez, R., Ramon, G. Z. & Coronell, O. Investigating the void structure of the polyamide active layers of thin-film composite membranes. J. Memb. Sci. 497, 365–376 (2016).

    CAS  Article  Google Scholar 

  29. 29.

    Pacheco, F., Sougrat, R., Reinhard, M., Leckie, J. O. & Pinnau, I. 3D visualization of the internal nanostructure of polyamide thin films in RO membranes. J. Memb. Sci. 501, 33–44 (2016).

    CAS  Article  Google Scholar 

  30. 30.

    Wong, M. C. Y., Lin, L., Coronell, O., Hoek, E. M. V. & Ramon, G. Z. Impact of liquid-filled voids within the active layer on transport through thin-film composite membranes. J. Memb. Sci. 500, 124–135 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    Li, Y. et al. Probing flow activity in polyamide layer of reverse osmosis membrane with nanoparticle tracers. J. Memb. Sci. 534, 9–17 (2017).

    CAS  Article  Google Scholar 

Download references


This work was supported by Agence Nationale de la Recherche grant nos. ANR-18-CE06-0004-02, WATERCHANNELS and ERANETMED2-72-357 IDEA. The authors thank D. Cot (University of Montpellier) for SEM experiments, F. Ricceri (Politecnico di Torino) for help with filtration experiments and M. Deleanu (University of Montpellier) for help with the organic synthesis of HC6 and characterization.

Author information




M.B. conceived the project and designed the experiments. M.D.V. fabricated the membranes, performed IR, EDX characterization and SEM analysis. L.-B.H. performed X-ray powder diffraction analysis. M.D.V. and A.T. designed and performed the filtration experiments. S.P.N. designed and V.-E.M., S.C. and R.S., performed DLS, SAXS and TEM experiments and conducted the experimental analysis. M.B. wrote the manuscript with input from all authors. All authors discussed the results and commented on the manuscript

Corresponding author

Correspondence to Mihail Barboiu.

Ethics declarations

Competing interests

M.B., M.D.V. and A.T. are inventors on a provisional patent application submitted in 2019 by the SATT AxLR on behalf of the Centre National de la Recherche Scientifique (CNRS) for the design, synthesis and performances of the membrane materials in this study.

Additional information

Peer review information Nature Nanotechnology thanks Isabel Escobar, Jun-li Hou and Claus Helix Nielsen for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figs 1–12, Tables 1–8, Methods, discussion and refs. S1 and S2.

Supplementary Video 1

The sum of tilted images of the sample TFC with different angles of TEM tomography.

Supplementary Video 2

The sum of tilted images of the sample TFC–HC6 with different angles of TEM tomography.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Di Vincenzo, M., Tiraferri, A., Musteata, VE. et al. Biomimetic artificial water channel membranes for enhanced desalination. Nat. Nanotechnol. 16, 190–196 (2021).

Download citation


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research