Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Two-dimensional adaptive membranes with programmable water and ionic channels

Abstract

Membranes are ubiquitous in nature with primary functions that include adaptive filtering and selective transport of chemical/molecular species. Being critical to cellular functions, they are also fundamental in many areas of science and technology. Of particular importance are the adaptive and programmable membranes that can change their permeability or selectivity depending on the environment. Here, we explore implementation of such biological functions in artificial membranes and demonstrate two-dimensional self-assembled heterostructures of graphene oxide and polyamine macromolecules, forming a network of ionic channels that exhibit regulated permeability of water and monovalent ions. This permeability can be tuned by a change of pH or the presence of certain ions. Unlike traditional membranes, the regulation mechanism reported here relies on specific interactions between the membranes’ internal components and ions. This allows fabrication of membranes with programmable, predetermined permeability and selectivity, governed by the choice of components, their conformation and their charging state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of GO–PA membranes.
Fig. 2: Selective permeability of GO–PA membranes.
Fig. 3: The inner and outer counterion concentrations creating osmotic water flow, as shown by green and red arrows at pH 1, pH 2, pH 4 and pH 7.
Fig. 4: The pH-regulated ion permeability through the GO–PA 25 kDa membrane.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.

References

  1. Noireaux, V. & Libchaber, A. A vesicle bioreactor as a step toward an artificial cell assembly. Proc. Natl Acad. Sci. USA 101, 17669–17674 (2004).

    Article  CAS  Google Scholar 

  2. Kotas, M. E. & Medzhitov, R. Homeostasis, inflammation, and disease susceptibility. Cell 160, 816–827 (2015).

    Article  CAS  Google Scholar 

  3. Rothfield, L. I. Structure and Function of Biological Membranes (Academic Press, 1971).

  4. Sowerby, S. J., Stockwell, P. A., Heckl, W. M. & Petersen, G. B. Self-programmable, self-assembling two-dimensional genetic matter. Orig. Life Evol. Biosph. 30, 81–99 (2000).

    Article  CAS  Google Scholar 

  5. Nitta, N., Wu, F. X., Lee, J. T. & Yushin, G. Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015).

    Article  CAS  Google Scholar 

  6. Wang, J. L. & Zhuang, S. T. Removal of cesium ions from aqueous solutions using various separation technologies. Rev. Environ. Sci. Biotechnol. 18, 231–269 (2019).

    Article  CAS  Google Scholar 

  7. Gopinadhan, K. et al. Complete steric exclusion of ions and proton transport through confined monolayer water. Science 363, 145–148 (2019).

    Article  CAS  Google Scholar 

  8. Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).

    Article  CAS  Google Scholar 

  9. Su, Y. et al. Impermeable barrier films and protective coatings based on reduced graphene oxide. Nat. Commun. 5, 4843 (2014).

    Article  CAS  Google Scholar 

  10. Chen, L. et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550, 415–418 (2017).

    Article  CAS  Google Scholar 

  11. Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. & Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335, 442–444 (2012).

    Article  CAS  Google Scholar 

  12. Hong, S. et al. Scalable graphene-based membranes for ionic sieving with ultrahigh charge selectivity. Nano Lett. 17, 728–732 (2017).

    Article  CAS  Google Scholar 

  13. Dikin, D. A. et al. Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007).

    Article  CAS  Google Scholar 

  14. Kotov, N. A., Dekany, I. & Fendler, J. H. Ultrathin graphite oxide–polyelectrolyte composites prepared by self-assembly: transition between conductive and non-conductive states. Adv. Mater. 8, 637–641 (1996).

    Article  CAS  Google Scholar 

  15. Kulkarni, D. D., Choi, I., Singamaneni, S. & Tsukruk, V. V. Graphene oxide–polyelectrolyte nanomembranes. ACS Nano 4, 4667–4676 (2010).

    Article  CAS  Google Scholar 

  16. Wei, C. F. & Lintilhac, P. M. Loss of stability: a new look at the physics of cell wall behavior during plant cell growth. Plant Physiol. 145, 763–772 (2007).

    Article  CAS  Google Scholar 

  17. Burgert, I. & Fratzl, P. Mechanics of the Expanding Cell Wall 191–215 (Springer-Verlag, 2006).

  18. Peters, W. S., Hagemann, W. & Tomos, A. D. What makes plants different? Principles of extracellular matrix function in ‘soft’ plant tissues. Comp. Biochem. Physiol. A 125, 151–167 (2000).

    Article  CAS  Google Scholar 

  19. Sun, P. Z., Wang, K. L. & Zhu, H. W. Recent developments in graphene-based membranes: structure, mass-transport mechanism and potential applications. Adv. Mater. 28, 2287–2310 (2016).

    Article  CAS  Google Scholar 

  20. Liu, G. P., Jin, W. Q. & Xu, N. P. Graphene-based membranes. Chem. Soc. Rev. 44, 5016–5030 (2015).

    Article  CAS  Google Scholar 

  21. Qiu, L. et al. Controllable corrugation of chemically converted graphene sheets in water and potential application for nanofiltration. Chem. Commun. 47, 5810–5812 (2011).

    Article  CAS  Google Scholar 

  22. Andreeva, D. V., Fix, D., Mohwald, H. & Shchukin, D. G. Self-healing anticorrosion coatings based on pH-sensitive polyelectrolyte/inhibitor sandwichlike nanostructures. Adv. Mater. 20, 2789–2794 (2008).

    Article  CAS  Google Scholar 

  23. Shepherd, E. J. & Kitchener, J. A. The ionization of ethyleneimine and polyethyleneimine. J. Chem. Soc., 2448–2452 (1956).

  24. Konkena, B. & Vasudevan, S. Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through pKa measurements. J. Phys. Chem. Lett. 3, 867–872 (2012).

    Article  CAS  Google Scholar 

  25. Farhat, T., Yassin, G., Dubas, S. T. & Schlenoff, J. B. Water and ion pairing in polyelectrolyte multilayers. Langmuir 15, 6621–6623 (1999).

    Article  CAS  Google Scholar 

  26. Cath, T. Y., Childress, A. E. & Elimelech, M. Forward osmosis: principles, applications, and recent developments. J. Membr. Sci. 281, 70–87 (2006).

    Article  CAS  Google Scholar 

  27. Petrucci, R. H., Herring, F. G., Madura, J. D. & Bissonnette, C. General Chemistry: Principles and Modern Applications 577–580 (Pearson Education, 2016).

  28. Yeh, C. N., Raidongia, K., Shao, J. J., Yang, Q. H. & Huang, J. X. On the origin of the stability of graphene oxide membranes in water. Nat. Chem. 7, 166–170 (2015).

    Article  CAS  Google Scholar 

  29. Itano, K., Choi, J. Y. & Rubner, M. F. Mechanism of the pH-induced discontinuous swelling/deswelling transitions of poly(allylamine hydrochloride)-containing polyelectrolyte multilayer films. Macromolecules 38, 3450–3460 (2005).

    Article  CAS  Google Scholar 

  30. Lutzenkirchen, J. et al. Potentiometric titrations as a tool for surface charge determination. Croat. Chem. Acta 85, 391–417 (2012).

    Article  Google Scholar 

  31. Katchalsky, A. & Spitnik, P. Potentiometric titrations of polymethacrylic acid. J. Polym. Sci. 2, 432–446 (1947).

    Article  CAS  Google Scholar 

  32. Delgado, A. V., Gonzalez-Caballero, F., Hunter, R. J., Koopal, L. K. & Lyklema, J. Measurement and interpretation of electrokinetic phenomena. J. Colloid Interface Sci. 309, 194–224 (2007).

    Article  CAS  Google Scholar 

  33. Israelachvili, J. N. Intermolecular and Surface Forces (Elsevier, 2011).

  34. Atkins, P. W. & de Paula, J. Atkins’ Physical Chemistry 8th edn (Oxford Univ. Press, 2006).

  35. Krasemann, L. & Tieke, B. Selective ion transport across self-assembled alternating multilayers of cationic and anionic polyelectrolytes. Langmuir 16, 287–290 (2000).

    Article  CAS  Google Scholar 

  36. Harris, J. J., DeRose, P. M. & Bruening, M. L. Synthesis of passivating, nylon-like coatings through cross-linking of ultrathin polyelectrolyte films. J. Am. Chem. Soc. 121, 1978–1979 (1999).

    Article  CAS  Google Scholar 

  37. Cohen-Tanugi, D. & Grossman, J. C. Water desalination across nanoporous graphene. Nano Lett. 12, 3602–3608 (2012).

    Article  CAS  Google Scholar 

  38. Han, Y., Xu, Z. & Gao, C. Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 23, 3693–3700 (2013).

    Article  CAS  Google Scholar 

  39. Hu, M. & Mi, B. X. Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol. 47, 3715–3723 (2013).

    Article  CAS  Google Scholar 

  40. Lerf, A. et al. Hydration behavior and dynamics of water molecules in graphite oxide. J. Phys. Chem. Solids 67, 1106–1110 (2006).

    Article  CAS  Google Scholar 

  41. Boukhvalov, D. W., Katsnelson, M. I. & Son, Y. W. Origin of anomalous water permeation through graphene oxide membrane. Nano Lett. 13, 3930–3935 (2013).

    Article  CAS  Google Scholar 

  42. Koenig, S. P., Wang, L. D., Pellegrino, J. & Bunch, J. S. Selective molecular sieving through porous graphene. Nat. Nanotechnol. 7, 728–732 (2012).

    Article  CAS  Google Scholar 

  43. Furutani, Y., Shimizu, H., Asai, Y., Oiki, S. & Kandori, H. Specific interactions between alkali metal cations and the KcsA channel studied using ATR-FTIR spectroscopy. Biophys. Physicobiol. 12, 37–45 (2015).

    Article  CAS  Google Scholar 

  44. Rose, L. & Jenkins, A. T. A. The effect of the ionophore valinomycin on biomimetic solid supported lipid DPPTE/EPC membranes. Bioelectrochemistry 70, 387–393 (2007).

    Article  CAS  Google Scholar 

  45. Yeagle, P. L. The Membranes of Cells (Elsevier Science, 2016).

Download references

Acknowledgements

We thank NRF (Singapore) for financial support through the project Medium-Sized Centre programme R-723-000-001-281, and RSF (Russian Federation) for grant no. 19-19-00508. M.T. thanks the Director’s Senior Research Fellowship of the Centre. K.S.N. also acknowledges support from EU Flagship Programs (Graphene CNECTICT-604391 and 2D-SIPC Quantum Technology), European Research Council Synergy Grant Hetero2D, the Royal Society and EPSRC grants EP/N010345/1, EP/P026850/1 and EP/S030719/1.

Author information

Authors and Affiliations

Authors

Contributions

D.V.A., M.T. and K.S.N. conceived and designed the experiments. A.N., M.C.F.C., P.V.C., M.H., K.Y., S.C., S.W.C. and U.M. performed the experiments. A.H.C.N. contributed the materials and analysis tools. D.V.A., M.T. and K.S.N. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Kostya S. Novoselov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Haiping Fang, Ho Bum Park and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17, Discussion, Methods, Theory and Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreeva, D.V., Trushin, M., Nikitina, A. et al. Two-dimensional adaptive membranes with programmable water and ionic channels. Nat. Nanotechnol. 16, 174–180 (2021). https://doi.org/10.1038/s41565-020-00795-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-020-00795-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing