A nanotherapeutic strategy to overcome chemotherapeutic resistance of cancer stem-like cells

Abstract

Tumour heterogeneity remains a major challenge in cancer therapy owing to the different susceptibility of cells to chemotherapy within a solid tumour. Cancer stem-like cells (CSCs), which reside in hypoxic tumour regions, are characterized by high tumourigenicity and chemoresistance and are often responsible for tumour progression and recurrence. Here we report a nanotherapeutic strategy to kill CSCs in tumours using nanoparticles that are co-loaded with the differentiation-inducing agent, all-trans retinoic acid, and the chemotherapeutic drug, camptothecin. All-trans retinoic acid is released under hypoxic conditions, leading to CSC differentiation in the hypoxic niche. In differentiating CSC, the reactive oxygen species levels increase, which then causes the release of camptothecin and subsequent cell death. This dual strategy enables controlled drug release in CSCs and reduces stemness-related drug resistance, enhancing the chemotherapeutic response. In breast tumour mouse models, treatment with the nanoparticles suppresses tumour growth and prevents post-surgical tumour relapse and metastasis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic of a convergent nanotherapeutic strategy to overcome intratumour heterogeneity-imposed therapeutic obstacle for enhanced anticancer efficacy.
Fig. 2: Enhanced chemo-cytotoxicity against CSCs by ATRA-induced differentiation.
Fig. 3: Preparation and characterization of ATRA/CPT-NPs.
Fig. 4: Combination effects of ATRA/CPT-NPs on reducing stemness-related properties, relieving tumour hypoxia, inhibiting cell proliferation in vitro and suppressing tumour formation in vivo.
Fig. 5: Combination effects in vivo of ATRA/CPT-NPs on inhibiting primary tumour growth.
Fig. 6: Combination effects in vivo of ATRA/CPT-NPs on inhibiting post-surgical tumour recurrence and metastasis.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Meacham, C. E. & Morrison, S. J. Tumour heterogeneity and cancer cell plasticity. Nature 501, 328–337 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15, 81–94 (2018).

    CAS  Article  Google Scholar 

  3. 3.

    Batlle, E. & Clevers, H. Cancer stem cells revisited. Nat. Med. 23, 1124–1134 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Shackleton, M., Quintana, E., Fearon, E. R. & Morrison, S. J. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138, 822–829 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    Magee, J. A., Piskounova, E. & Morrison, S. J. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 21, 283–296 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    Shibue, T. & Weinberg, R. A. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 14, 611–629 (2017).

    Article  Google Scholar 

  7. 7.

    Baumann, M., Krause, M. & Hill, R. Exploring the role of cancer stem cells in radioresistance. Nat. Rev. Cancer 8, 545–554 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    Shlush, L. I. et al. Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature 547, 104–148 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    Ye, X. et al. Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature 525, 256–260 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Lathia, J. D., Mack, S. C., Mulkearns-Hubert, E. E., Valentim, C. L. & Rich, J. N. Cancer stem cells in glioblastoma. Genes Dev. 29, 1203–1217 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Zeuner, A., Todaro, M., Stassi, G. & De Maria, R. Colorectal cancer stem cells: from the crypt to the clinic. Cell Stem Cell 15, 692–705 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    Pece, S. et al. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140, 62–73 (2010).

    CAS  Article  Google Scholar 

  13. 13.

    Eramo, A. et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 15, 504–514 (2008).

    CAS  Article  Google Scholar 

  14. 14.

    Hurt, E. M., Kawasaki, B. T., Klarmann, G. J., Thomas, S. B. & Farrar, W. L. CD44+CD24 prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br. J. Cancer 98, 756–765 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    Saygin, C., Matei, D., Majeti, R., Reizes, O. & Lathia, J. D. Targeting cancer stemness in the clinic: from hype to hope. Cell Stem Cell 24, 25–40 (2019).

    CAS  Article  Google Scholar 

  16. 16.

    de Thé, H Differentiation therapy revisited. Nat. Rev. Cancer 18, 117–127 (2018).

    Article  CAS  Google Scholar 

  17. 17.

    Hu, J. et al. Long-term efficacy and safety of all-trans retinoic acid/arsenic trioxide-based therapy in newly diagnosed acute promyelocytic leukemia. Proc. Natl Acad. Sci. USA 106, 3342–3347 (2009).

    CAS  Article  Google Scholar 

  18. 18.

    Piccirillo, S. G. et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444, 761–765 (2006).

    CAS  Article  Google Scholar 

  19. 19.

    Yoldi, G. et al. RANK signaling blockade reduces breast cancer recurrence by inducing tumor cell differentiation. Cancer Res. 76, 5857–5869 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Shimokawa, M. et al. Visualization and targeting of LGR5+ human colon cancer stem cells. Nature 545, 187–192 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    Ginestier, C. et al. Retinoid signaling regulates breast cancer stem cell differentiation. Cell Cycle 8, 3297–3302 (2009).

    CAS  Article  Google Scholar 

  22. 22.

    Gupta, P. B. et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146, 633–644 (2011).

    CAS  Article  Google Scholar 

  23. 23.

    Samanta, D., Gilkes, D. M., Chaturvedi, P., Xiang, L. & Semenza, G. L. Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells. Proc. Natl Acad. Sci. USA 111, E5429–E5438 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    Wang, C. et al. Evaluation of CD44 and CD133 as cancer stem cell markers for colorectal cancer. Oncol. Rep. 28, 1301–1308 (2012).

    CAS  Article  Google Scholar 

  25. 25.

    Zheng, X., Cui, D., Xu, S., Brabant, G. & Derwahl, M. Doxorubicin fails to eradicate cancer stem cells derived from anaplastic thyroid carcinoma cells: characterization of resistant cells. Int. J. Oncol. 37, 307–315 (2010).

    CAS  Article  Google Scholar 

  26. 26.

    Li, Y., Atkinson, K. & Zhang, T. Combination of chemotherapy and cancer stem cell targeting agents: preclinical and clinical studies. Cancer Lett. 396, 103–109 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    Dicko, A., Mayer, L. D. & Tardi, P. G. Use of nanoscale delivery systems to maintain synergistic drug ratios in vivo. Expert Opin. Drug Deliv. 7, 1329–1341 (2010).

    CAS  Article  Google Scholar 

  28. 28.

    Sun, R. et al. Co-delivery of all-trans-retinoic acid and doxorubicin for cancer therapy with synergistic inhibition of cancer stem cells. Biomaterials 37, 405–414 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    Mu, L. M. et al. Development of functional dendrisomes based on a single molecule of polyesterbenzylether dendrimer and their application in cancer stem cell therapy. NPG Asia Mater. 11, 1–16 (2019).

    Article  Google Scholar 

  30. 30.

    Sengupta, S. et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436, 568–572 (2005).

    CAS  Article  Google Scholar 

  31. 31.

    Kolishetti, N. et al. Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proc. Natl Acad. Sci. USA 107, 17939–17944 (2010).

    CAS  Article  Google Scholar 

  32. 32.

    Pouyssegur, J., Dayan, F. & Mazure, N. M. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441, 437–443 (2006).

    CAS  Article  Google Scholar 

  33. 33.

    Borovski, T., Felipe De Sousa, E. M., Vermeulen, L. & Medema, J. P. Cancer stem cell niche: the place to be. Cancer Res. 71, 634–639 (2011).

    CAS  Article  Google Scholar 

  34. 34.

    Mohyeldin, A., Garzon-Muvdi, T. & Quinones-Hinojosa, A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7, 150–161 (2010).

    CAS  Article  Google Scholar 

  35. 35.

    Yu, J. et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc. Natl Acad. Sci. USA 112, 8260–8265 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Gudas, L. J. & Wagner, J. A. Retinoids regulate stem cell differentiation. J. Cell. Physiol. 226, 322–330 (2011).

    CAS  Article  Google Scholar 

  37. 37.

    Saravanakumar, G., Kim, J. & Kim, W. J. Reactive-oxygen-species-responsive drug delivery systems: Promises and challenges. Adv. Sci. 4, 1600124 (2017).

    Article  CAS  Google Scholar 

  38. 38.

    Shi, X., Zhang, Y., Zheng, J. & Pan, J. Reactive oxygen species in cancer stem cells. Antioxid. Redox Signal. 16, 1215–1228 (2012).

    CAS  Article  Google Scholar 

  39. 39.

    Diehn, M. et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458, 780–783 (2009).

    CAS  Article  Google Scholar 

  40. 40.

    Saretzki, G. et al. Downregulation of multiple stress defense mechanisms during differentiation of human embryonic stem cells. Stem Cells 26, 455–464 (2008).

    CAS  Article  Google Scholar 

  41. 41.

    Ye, X. Q. et al. Mitochondrial and energy metabolism-related properties as novel indicators of lung cancer stem cells. Int. J. Cancer 129, 820–831 (2011).

    CAS  Article  Google Scholar 

  42. 42.

    Kobayashi, C. I. & Suda, T. Regulation of reactive oxygen species in stem cells and cancer stem cells. J. Cell. Physiol. 227, 421–430 (2012).

    CAS  Article  Google Scholar 

  43. 43.

    Liou, G.-Y. & Storz, P. Reactive oxygen species in cancer. Free Radic. Res. 44, 479–496 (2010).

    CAS  Article  Google Scholar 

  44. 44.

    Wang, Q., Yang, W., Uytingco, M. S., Christakos, S. & Wieder, R. 1,25-Dihydroxyvitamin D3 and all-trans-retinoic acid sensitize breast cancer cells to chemotherapy-induced cell death. Cancer Res. 60, 2040–2048 (2000).

    CAS  Google Scholar 

  45. 45.

    Bertozzi, D. et al. The natural inhibitor of DNA topoisomerase I, camptothecin, modulates HIF-1α activity by changing miR expression patterns in human cancer cells. Mol. Cancer Ther. 13, 239–248 (2014).

    CAS  Article  Google Scholar 

  46. 46.

    Baranello, L., Bertozzi, D., Fogli, M. V., Pommier, Y. & Capranico, G. DNA topoisomerase I inhibition by camptothecin induces escape of RNA polymerase II from promoter-proximal pause site, antisense transcription and histone acetylation at the human HIF-1α gene locus. Nucleic Acids Res. 38, 159–171 (2009).

    Article  CAS  Google Scholar 

  47. 47.

    Hirschmann-Jax, C. et al. A distinct ‘side population’ of cells with high drug efflux capacity in human tumor cells. Proc. Natl Acad. Sci. USA 101, 14228–14233 (2004).

    CAS  Article  Google Scholar 

  48. 48.

    Ginestier, C. et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1, 555–567 (2007).

    CAS  Article  Google Scholar 

  49. 49.

    Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

    CAS  Article  Google Scholar 

  50. 50.

    Sato, A. et al. Pivotal role for ROS activation of p38 MAPK in the control of differentiation and tumor-initiating capacity of glioma-initiating cells. Stem Cell Res. 12, 119–131 (2014).

    CAS  Article  Google Scholar 

  51. 51.

    Owusu-Ansah, E. & Banerjee, U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461, 537–541 (2009).

    CAS  Article  Google Scholar 

  52. 52.

    Topaly, J., Zeller, W. J. & Fruehauf, S. Synergistic activity of the new ABL-specific tyrosine kinase inhibitor STI571 and chemotherapeutic drugs on BCR-ABL-positive chronic myelogenous leukemia cells. Leukemia 15, 342–347 (2001).

    CAS  Article  Google Scholar 

  53. 53.

    Thambi, T. et al. Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery. Biomaterials 35, 1735–1743 (2014).

    CAS  Article  Google Scholar 

  54. 54.

    Sarkadi, B., Homolya, L., Szakacs, G. & Varadi, A. Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiol. Rev. 86, 1179–1236 (2006).

    CAS  Article  Google Scholar 

  55. 55.

    Peach, R. J., Hollenbaugh, D., Stamenkovic, I. & Aruffo, A. Identification of hyaluronic acid binding sites in the extracellular domain of CD44. J. Cell Biol. 122, 257–264 (1993).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81673381), the National Ten Thousand Talents Program for Young Top-notch Talents, the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (171028), the Project of State Key Laboratory of Natural Medicines of China Pharmaceutical University (SKLNMZZ202024), the Funding of Double First-Rate Discipline Innovation Team (CPU2018GF05), the Natural Science Foundation of Jiangsu Province of China for Distinguished Young Scholars (BK20150029) and the Young Elite Scientists Sponsorship Program by CAST (2015QNRC001). We also acknowledge the Public Platform of State Key Laboratory of Natural Medicines for the use of the cell culture and analytical instrumentation facilities. We thank C. Wang at Soochow University for providing 4T1-Luc cells.

Author information

Affiliations

Authors

Contributions

R.M. supervised and conceived the project. R.M. and S.S. designed the experiments, analysed the data and wrote the manuscript. S.S., X.X., S.L., Y.Z., H.L. and R.M. performed the experiments. C.Z. contributed to the discussion and provided relevant advice. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ran Mo.

Ethics declarations

Competing interests

R.M., S.S., Y.Z. and H.L. have applied for patents related to this study.

Additional information

Peer review information Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Experimental materials, Methods, Figs. 1–36 and Table 1.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shen, S., Xu, X., Lin, S. et al. A nanotherapeutic strategy to overcome chemotherapeutic resistance of cancer stem-like cells. Nat. Nanotechnol. 16, 104–113 (2021). https://doi.org/10.1038/s41565-020-00793-0

Download citation

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research