Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intermolecular conical intersections in molecular aggregates

Abstract

Conical intersections (CoIns) of multidimensional potential energy surfaces are ubiquitous in nature and control pathways and yields of many photo-initiated intramolecular processes. Such topologies can be potentially involved in the energy transport in aggregated molecules or polymers but are yet to be uncovered. Here, using ultrafast two-dimensional electronic spectroscopy (2DES), we reveal the existence of intermolecular CoIns in molecular aggregates relevant for photovoltaics. Ultrafast, sub-10-fs 2DES tracks the coherent motion of a vibrational wave packet on an optically bright state and its abrupt transition into a dark state via a CoIn after only 40 fs. Non-adiabatic dynamics simulations identify an intermolecular CoIn as the source of these unusual dynamics. Our results indicate that intermolecular CoIns may effectively steer energy pathways in functional nanostructures for optoelectronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of wave packet motion through a conical intersection (CoIn) in the potential energy surface V(Q1, Q2, Q3) of an A–D–A oligomer aggregate.
Fig. 2: 2DES probes wave packet motion through an intermolecular conical intersection (CoIn) in a thin film of molecular aggregates.
Fig. 3: Non-adiabatic excited-state molecular dynamics simulations of an A–D–A oligomer dimer.

Similar content being viewed by others

Data availability

The data that support the findings of this study, large data sets stored in the data repositories of different institutions in different countries, are available from the authors upon reasonable request.

Code availability

The NEXMD code is available at https://github.com/lanl/NEXMD. This program is open source under the BSD-3 Licence.

References

  1. Köppel, H., Domcke, W. & Cederbaum, L. S. in Advances in Chemical Physics Vol. 57 (eds Prigogine, I. & Rice, S. A.) 59–246 (John Wiley & Sons, Inc., 2007).

  2. Worth, G. A. & Cederbaum, L. S. Beyond Born–Oppenheimer: molecular dynamics through a conical intersection. Ann. Rev. Phys. Chem. 55, 127–158 (2004).

    Article  CAS  Google Scholar 

  3. Domcke, W. & Yarkony, D. R. Role of conical intersections in molecular spectroscopy and photoinduced chemical dynamics. Ann. Rev. Phys. Chem. 63, 325–352 (2012).

    Article  CAS  Google Scholar 

  4. Franck, J. & Dymond, E. G. Elementary processes of photochemical reactions. Trans. Faraday Soc. 21, 536–542 (1926).

    Article  Google Scholar 

  5. Hader, K., Albert, J., Gross, E. K. U. & Engel, V. Electron-nuclear wave-packet dynamics through a conical intersection. J. Chem. Phys. 146, 5 (2017).

    Article  CAS  Google Scholar 

  6. Polli, D. et al. Conical intersection dynamics of the primary photoisomerization event in vision. Nature 467, 440–443 (2010).

    Article  CAS  Google Scholar 

  7. Robb, M. A. in Advances in Physical Organic Chemistry Vol. 48 (eds Williams, I. H. & Williams, N. H.) 189–228 (Academic Press, 2014).

  8. Kowalewski, M., Fingerhut, B. P., Dorfman, K. E., Bennett, K. & Mukamel, S. Simulating coherent multidimensional spectroscopy of nonadiabatic molecular processes: from the infrared to the X-ray regime. Chem. Rev. 117, 12165–12226 (2017).

    Article  CAS  Google Scholar 

  9. Wang, Q., Schoenlein, R. W., Peteanu, L. A., Mathies, R. A. & Shank, C. V. Vibrationally coherent photochemistry in the femtosecond primary event of vision. Science 266, 422 (1994).

    Article  CAS  Google Scholar 

  10. Schapiro, I. et al. The ultrafast photoisomerizations of rhodopsin and bathorhodopsin are modulated by bond length alternation and HOOP driven electronic effects. J. Am. Chem. Soc. 133, 3354–3364 (2011).

    Article  CAS  Google Scholar 

  11. Johnson, P. J. M. et al. Local vibrational coherences drive the primary photochemistry of vision. Nat. Chem. 7, 980–986 (2015).

    Article  CAS  Google Scholar 

  12. Schnedermann, C. et al. Evidence for a vibrational phase-dependent isotope effect on the photochemistry of vision. Nat. Chem. 10, 449–455 (2018).

    Article  CAS  Google Scholar 

  13. Waldeck, D. H. Photoisomerization dynamics of stilbenes. Chem. Rev. 91, 415–436 (1991).

    Article  CAS  Google Scholar 

  14. Nenov, A. et al. UV-light-induced vibrational coherences: the key to understand Kasha rule violation in trans-azobenzene. J. Phys. Chem. Lett. 9, 1534–1541 (2018).

    Article  CAS  Google Scholar 

  15. Gueye, M. et al. Engineering the vibrational coherence of vision into a synthetic molecular device. Nat. Commun. 9, 313 (2018).

    Article  CAS  Google Scholar 

  16. Bhattacherjee, A. et al. Photoinduced heterocyclic ring opening of furfural: distinct open-chain product identification by ultrafast X-ray transient absorption spectroscopy. J. Am. Chem. Soc. 140, 12538–12544 (2018).

    Article  CAS  Google Scholar 

  17. Yang, J. et al. Imaging CFl3 conical intersection and photodissociation dynamics with ultrafast electron diffraction. Science 361, 64 (2018).

    Article  CAS  Google Scholar 

  18. Liebel, M., Schnedermann, C. & Kukura, P. Vibrationally coherent crossing and coupling of electronic states during internal conversion in beta-carotene. Phys. Rev. Lett. 112, 198302 (2014).

    Article  CAS  Google Scholar 

  19. Sobolewski, A. L. & Domcke, W. Ab initio studies on the photophysics of the guanine–cytosine base pair. Phys. Chem. Chem. Phys. 6, 2763–2771 (2004).

    Article  CAS  Google Scholar 

  20. Groenhof, G. et al. Ultrafast deactivation of an excited cytosine-guanine base pair in DNA. J. Am. Chem. Soc. 129, 6812–6819 (2007).

    Article  CAS  Google Scholar 

  21. Musser, A. J. et al. Evidence for conical intersection dynamics mediating ultrafast singlet exciton fission. Nat. Phys. 11, 352–357 (2015).

    Article  CAS  Google Scholar 

  22. Ai, Y. J. et al. Excited-state decay pathways of flavin molecules in five redox forms: the role of conical intersections. J. Phys. Chem. A. 122, 7954–7961 (2018).

    Article  CAS  Google Scholar 

  23. Hore, P. J. & Mouritsen, H. The radical-pair mechanism of magnetoreception. Ann. Rev. Biophys. 45, 299–344 (2016).

    Article  CAS  Google Scholar 

  24. Hestand, N. J. & Spano, F. C. Expanded theory of H- and J-molecular aggregates: the effects of vibronic coupling and intermolecular charge transfer. Chem. Rev. 118, 7069–7163 (2018).

    Article  CAS  Google Scholar 

  25. Popp, W., Polkehn, M., Binder, R. & Burghardt, I. Coherent charge transfer exciton formation in regioregular P3HT: a quantum dynamical study. J. Phys. Chem. Lett. 10, 3326–3332 (2019).

    Article  CAS  Google Scholar 

  26. Settels, V. et al. Identification of ultrafast relaxation processes as a major reason for inefficient exciton diffusion in perylene-based organic semiconductors. J. Am. Chem. Soc. 136, 9327–9337 (2014).

    Article  CAS  Google Scholar 

  27. Lee, M. H. & Troisi, A. Vibronic enhancement of excitation energy transport: Interplay between local and non-local exciton-phonon interactions. J. Chem. Phys. 146, 075101 (2017).

    Article  CAS  Google Scholar 

  28. Duan, H.-G., Nalbach, P., Miller, R. J. D. & Thorwart, M. Ultrafast energy transfer in excitonically coupled molecules induced by a nonlocal Peierls phonon. J. Phys. Chem. Lett. 10, 1206–1211 (2019).

    Article  CAS  Google Scholar 

  29. Popovic, D. et al. Preparation of efficient oligomer-based bulk-heterojunction solar cells from eco-friendly solvents. J. Mater. Chem. C. 5, 9920 (2017).

    Article  CAS  Google Scholar 

  30. Coughlin, J. E., Henson, Z. B., Welch, G. C. & Bazan, G. C. Design and synthesis of molecular donors for solution-processed high-efficiency organic solar cells. Acc. Chem. Res. 47, 257–270 (2014).

    Article  CAS  Google Scholar 

  31. Liess, A. et al. Ultranarrow bandwidth organic photodiodes by exchange narrowing in merocyanine H- and J-aggregate excitonic systems. Adv. Funct. Mater. 29, 1805058 (2019).

    Article  CAS  Google Scholar 

  32. Smits, E. C. P. et al. Near-Infrared light-emitting ambipolar organic field-effect transistors. Adv. Mater. 19, 734–738 (2007).

    Article  CAS  Google Scholar 

  33. Ben Dkhil, S. et al. Time evolution studies of dithieno[3,2-b:2′,3′-d]pyrrole-based A–D–A oligothiophene bulk heterojunctions during solvent vapor annealing towards optimization of photocurrent generation. J. Mater. Chem. A. 5, 1005–1013 (2017).

    Article  CAS  Google Scholar 

  34. Jonas, D. M. Two-dimensional femtosecond spectroscopy. Ann. Rev. Phys. Chem. 54, 425–463 (2003).

    Article  CAS  Google Scholar 

  35. De Sio, A. et al. Tracking the coherent generation of polaron pairs in conjugated polymers. Nat. Commun. 7, 13742 (2016).

    Article  CAS  Google Scholar 

  36. De Sio, A. & Lienau, C. Vibronic coupling in organic semiconductors for photovoltaics. Phys. Chem. Chem. Phys. 19, 18813–18830 (2017).

    Article  Google Scholar 

  37. Pullerits, T., Zigmantas, D. & Sundström, V. Beatings in electronic 2D spectroscopy suggest another role of vibrations in photosynthetic light harvesting. Proc. Natl Acad. Sci. USA 110, 1148 (2013).

    Article  CAS  Google Scholar 

  38. Romero, E., Novoderezhkin, V. I. & van Grondelle, R. Quantum design of photosynthesis for bio-inspired solar-energy conversion. Nature 543, 355–365 (2017).

    Article  CAS  Google Scholar 

  39. Jonas, D. M. Vibrational and nonadiabatic coherence in 2D electronic spectroscopy, the Jahn–Teller effect, and energy transfer. Ann. Rev. Phys. Chem. 69, 327–352 (2016).

    Article  CAS  Google Scholar 

  40. Egorova, D., Gelin, M. F. & Domcke, W. Analysis of cross peaks in two-dimensional electronic photon-echo spectroscopy for simple models with vibrations and dissipation. J. Chem. Phys. 126, 074314 (2007).

    Article  CAS  Google Scholar 

  41. Nelson, T., Fernandez-Alberti, S., Roitberg, A. E. & Tretiak, S. Nonadiabatic excited-state molecular dynamics: modeling photophysics in organic conjugated materials. Acc. Chem. Res. 47, 1155–1164 (2014).

    Article  CAS  Google Scholar 

  42. Nelson, T., Fernandez-Alberti, S., Roitberg, A. E. & Tretiak, S. Electronic delocalization, vibrational dynamics, and energy transfer in organic chromophores. J. Phys. Chem. Lett. 8, 3020–3031 (2017).

    Article  CAS  Google Scholar 

  43. Barbatti, M. Nonadiabatic dynamics with trajectory surface hopping method. Wiley Interdiscip. Rev. Comput. Mol. Sci. 1, 620–633 (2011).

    Article  CAS  Google Scholar 

  44. Tretiak, S. & Mukamel, S. Density matrix analysis and simulation of electronic excitations in conjugated and aggregated molecules. Chem. Rev. 102, 3171–3212 (2002).

    Article  CAS  Google Scholar 

  45. Wu, C., Malinin, S. V., Tretiak, S. & Chernyak, V. Y. Exciton scattering and localization in branched dendrimeric structures. Nat. Phys. 2, 631–635 (2006).

    Article  CAS  Google Scholar 

  46. Schuurman, M. S. & Stolow, A. Dynamics at conical intersections. Ann. Rev. Phys. Chem. 69, 427–450 (2018).

    Article  CAS  Google Scholar 

  47. Herrera, F. & Spano, F. C. Cavity-controlled chemistry in molecular ensembles. Phys. Rev. Lett. 116, 238301 (2016).

    Article  Google Scholar 

  48. Galego, J., Garcia-Vidal, F. J. & Feist, J. Suppressing photochemical reactions with quantized light fields. Nat. Commun. 7, 13841 (2016).

    Article  CAS  Google Scholar 

  49. Gu, B. & Mukamel, S. Manipulating nonadiabatic conical intersection dynamics by optical cavities. Chem. Sci. 11, 1290–1298 (2020).

    Article  CAS  Google Scholar 

  50. Brida, D., Manzoni, C. & Cerullo, G. Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line. Opt. Lett. 37, 3027–3029 (2012).

    Article  Google Scholar 

  51. Neese, F. The ORCA program system. Wiley Interdiscip. Rev.: Computational Mol. Sci. 2, 73–78 (2012).

    CAS  Google Scholar 

  52. Yanai, T., Tew, D. P. & Handy, N. C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004).

    Article  CAS  Google Scholar 

  53. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  CAS  Google Scholar 

  54. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  Google Scholar 

  55. Nelson, T. R. et al. Non-adiabatic excited-state molecular dynamics: theory and applications for modeling photophysics in extended molecular materials. Chem. Rev. 120, 2215–2287 (2020).

    Article  CAS  Google Scholar 

  56. Tully, J. C. Molecular dynamics with electronic transitions. J. Chem. Phys. 93, 1061–1071 (1990).

    Article  CAS  Google Scholar 

  57. Nelson, T., Naumov, A., Fernandez-Alberti, S. & Tretiak, S. Nonadiabatic excited-state molecular dynamics: on-the-fly limiting of essential excited states. Chem. Phys. 481, 84–90 (2016).

    Article  CAS  Google Scholar 

  58. Nelson, T., Fernandez-Alberti, S., Roitberg, A. E. & Tretiak, S. Nonadiabatic excited-state molecular dynamics: treatment of electronic decoherence. J. Chem. Phys. 138, 224111 (2013).

    Article  CAS  Google Scholar 

  59. Tretiak, S., Isborn, C. M., Niklasson, A. M. N. & Challacombe, M. Representation independent algorithms for molecular response calculations in time-dependent self-consistent field theories. J. Chem. Phys. 130, 054111 (2009).

    Article  CAS  Google Scholar 

  60. Soler, M. A., Roitberg, A. E., Nelson, T., Tretiak, S. & Fernandez-Alberti, S. Analysis of state-specific vibrations coupled to the unidirectional energy transfer in conjugated dendrimers. J. Phys. Chem. A 116, 9802–9810 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support provided by the Deutsche Forschungsgemeinschaft (SPP1839, SPP1840, GRK1885: Molecular Basis of Sensory Biology, SFB1372: Magnetoreception and Navigation in Vertebrates, SINOXI FR2833/60-1, RTG-2247: Quantum Mechanical Materials Modelling), the Korea Foundation for International Cooperation of Science and Technology (Global Research Laboratory project, K20815000003) and the German-Israeli Foundation (grant no. 1256) is gratefully acknowledged. This work was performed in part at the Center for Nonlinear Studies and the Center for Integrated Nanotechnology, a US Department of Energy and Office of Basic Energy Sciences user facility. We acknowledge support from the Los Alamos National Laboratory (LANL) Directed Research and Development funds. This research used resources provided by the LANL Institutional Computing Program. S.F.-A. acknowledges CONICET, UNQ, ANPCyT (PICT-2018-02360) for their support. We thank P. Donfack and A. Materny for assistance with the Raman measurement. A.D.S. thanks D. Egorova for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

A.D.S., P.B. and C.L. initiated this project. D.P., E.M.-O. and P.B. synthesized the materials and prepared the thin films. E.S., X.T.N. and A.D.S. performed the experiments. E.S., A.D.S. and C.L. analysed the data. S.P., C.A.R., E.M., L.G., B.T.N., T.F. and S.T. performed quantum chemical modelling of the molecular structure and optical spectra. L.G., B.T.N., S.F.-A., T.F. and S.T. performed non-adiabatic dynamics simulations. A.D.S. and C.L. wrote the manuscript with important contributions from all authors.

Corresponding author

Correspondence to Antonietta De Sio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Oleg Prezhdo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Figs. 1–15 and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Sio, A., Sommer, E., Nguyen, X.T. et al. Intermolecular conical intersections in molecular aggregates. Nat. Nanotechnol. 16, 63–68 (2021). https://doi.org/10.1038/s41565-020-00791-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-020-00791-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing