Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Permselective metal–organic framework gel membrane enables long-life cycling of rechargeable organic batteries

Abstract

Rechargeable organic batteries show great potential as a low-cost, sustainable and mass-producible alternatives to current transition-metal-based cells; however, serious electrode dissolution issues and solubilization of organic redox intermediates (shuttle effect) have plagued the capacity retention and cyclability of these cells. Here we report on the use of a metal–organic framework (MOF) gel membrane as a separator for organic batteries. The homogeneous micropores, intrinsic of the MOF-gel separator, act as permselective channels for targeted organic intermediates, thereby mitigating the shuttling problem without sacrificing power. A battery using a MOF-gel separator and 5,5′-dimethyl-2,2′-bis-p-benzoquinone (Me2BBQ) as the electrode displays high cycle stability with capacity retention of 82.9% after 2,000 cycles, corresponding to a capacity decay of ~0.008% per cycle, with a discharge capacity of ~171 mA h g−1 at a current density of 300 mA g−1. The molecular and ionic sieving capabilities of MOF-gel separators promise general applicability, as pore size can be tuned to specific organic electrode materials. The use of MOF-gel separators to prevent side reactions of soluble organic redox intermediates could lead to the development of rechargeable organic batteries with high energy density and long cycling life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustrations of MOF-gel separators in rechargeable organic batteries.
Fig. 2: Schematic illustrations of dissolution behaviours in Li‒Me2BBQ batteries.
Fig. 3: Fabrication and characterization of MOF-gel separators.
Fig. 4: Electrochemical performance of Li‒Me2BBQ batteries.
Fig. 5: Surface morphologies of cycled Li-metal electrode.

Similar content being viewed by others

Data availability

All relevant data in the article are available from the corresponding author on reasonable request.

References

  1. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).

    Article  CAS  Google Scholar 

  2. Larcher, D. & Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015).

    Article  CAS  Google Scholar 

  3. Peng, C. X. et al. Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes. Nat. Energy 2, 17074 (2017).

    Article  CAS  Google Scholar 

  4. Poizot, P. & Dolhem, F. Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices. Energy Environ. Sci. 4, 2003–2019 (2011).

    Article  CAS  Google Scholar 

  5. Song, Z. P. & Zhou, H. S. Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ. Sci. 6, 2280–2301 (2013).

    Article  CAS  Google Scholar 

  6. Liang, Y. L., Zhang, P., Yang, S. Q., Tao, Z. L. & Chen, J. Fused heteroaromatic organic compounds for high-power electrodes of rechargeable lithium batteries. Adv. Energy Mater. 3, 600–605 (2013).

    Article  CAS  Google Scholar 

  7. Bhosale, M. E., Chae, S., Kim, J. M. & Choi, J. Y. Organic small molecules and polymers as an electrode material for rechargeable lithium ion batteries. J. Mater. Chem. A 6, 19885–19911 (2018).

    Article  CAS  Google Scholar 

  8. Nokami, T. et al. Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity. J. Am. Chem. Soc. 134, 19694–19700 (2012).

    Article  CAS  Google Scholar 

  9. Song, Z. P. et al. Polyanthraquinone as a reliable organic electrode for stable and fast lithium storage. Angew. Chem. Int. Ed. Engl. 54, 13947–13951 (2015).

    Article  CAS  Google Scholar 

  10. Muench, S. et al. Polymer-based organic batteries. Chem. Rev. 116, 9438–9484 (2016).

    Article  CAS  Google Scholar 

  11. Wang, S. et al. Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. J. Am. Chem. Soc. 139, 4258–4261 (2017).

    Article  CAS  Google Scholar 

  12. Luo, Z. Q. et al. A microporous covalent-organic framework with abundant accessible carbonyl groups for lithium-ion batteries. Angew. Chem. Int. Ed. Engl. 57, 9443–9446 (2018).

    Article  CAS  Google Scholar 

  13. Sieuw, L. et al. A H-bond stabilized quinone electrode material for Li-organic batteries: the strength of weak bonds. Chem. Sci. 10, 418–426 (2019).

    Article  CAS  Google Scholar 

  14. Jouhara, A. et al. Raising the redox potential in carboxyphenolate-based positive organic materials via cation substitution. Nat. Commun. 9, 4401 (2018).

    Article  CAS  Google Scholar 

  15. Kim, H. et al. High energy organic cathode for sodium rechargeable batteries. Chem. Mater. 27, 7258–7264 (2015).

    Article  CAS  Google Scholar 

  16. Zhang, K., Guo, C., Zhao, Q., Niu, Z. & Chen, J. High-performance organic lithium batteries with an ether-based electrolyte and 9,10-anthraquinone (AQ)/CMK-3 cathode. Adv. Sci. 2, 1500018 (2015).

    Article  CAS  Google Scholar 

  17. Huang, W. et al. Quasi-solid-state rechargeable lithium-ion batteries with a Calix[4]quinone cathode and gel polymer electrolyte. Angew. Chem. Int. Ed. Engl. 52, 9162–9166 (2013).

    Article  CAS  Google Scholar 

  18. Zhu, Z. et al. All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode. J. Am. Chem. Soc. 136, 16461–16464 (2014).

    Article  CAS  Google Scholar 

  19. Lei, X. et al. Flexible lithium–air battery in ambient air with an in situ formed gel electrolyte. Angew. Chem. Int. Ed. Engl. 57, 16131–16135 (2018).

    Article  CAS  Google Scholar 

  20. Chi, X. et al. Tailored organic electrode material compatible with sulfide electrolyte for stable all-solid-state sodium batteries. Angew. Chem. Int. Ed. Engl. 57, 2630–2634 (2018).

    Article  CAS  Google Scholar 

  21. Lee, S. et al. Recent progress in organic electrodes for Li and Na rechargeable batteries. Adv. Mater. 30, 1704682 (2018).

    Article  CAS  Google Scholar 

  22. Wang, S. et al. A robust large-pore zirconium carboxylate metal–organic framework for energy-efficient water-sorption-driven refrigeration. Nat. Energy 3, 985–993 (2018).

    Article  CAS  Google Scholar 

  23. Katsoulidis, A. P. et al. Chemical control of structure and guest uptake by a conformationally mobile porous material. Nature 565, 213–217 (2019).

    Article  CAS  Google Scholar 

  24. Furukawa, H. et al. Ultrahigh porosity in metal-organic frameworks. Science 329, 424–428 (2010).

    Article  CAS  Google Scholar 

  25. Qiu, S. L., Xue, M. & Zhu, G. S. Metal-organic framework membranes: from synthesis to separation application. Chem. Soc. Rev. 43, 6116–6140 (2014).

    Article  CAS  Google Scholar 

  26. Cao, L. et al. Channel-facilitated molecule and ion transport across polymer composite membranes. Chem. Soc. Rev. 46, 6725–6745 (2017).

    Article  CAS  Google Scholar 

  27. Bachman, J. E., Smith, Z. P., Li, T., Xu, T. & Long, J. R. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal–organic framework nanocrystals. Nat. Mater. 15, 845–849 (2016).

    Article  CAS  Google Scholar 

  28. Bai, S. Y. et al. Distinct anion sensing by a 2D self-assembled Cu(I)-based metal–organic polymer with versatile visual colorimetric responses and efficient selective separations via anion exchange. J. Mater. Chem. A 1, 2970–2973 (2013).

    Article  CAS  Google Scholar 

  29. Xia, B. Y. et al. A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 1, 15006 (2016).

    Article  CAS  Google Scholar 

  30. Chen, Y. et al. A solvent-free hot-pressing method for preparing metal–organic-framework coatings. Angew. Chem. Int. Ed. Engl. 55, 3419–3423 (2016).

    Article  CAS  Google Scholar 

  31. Bai, S. Y. et al. High-power Li-metal anode enabled by metal-organic framework modified electrolyte. Joule 2, 2117–2132 (2018).

    Article  CAS  Google Scholar 

  32. Yao, H. B. et al. Improved lithium–sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode–separator interface. Energy Environ. Sci. 7, 3381–3390 (2014).

    Article  CAS  Google Scholar 

  33. Xu, J. J. et al. In situ construction of stable tissue-directed/reinforced bifunctional separator/protection film on lithium anode for lithium-oxygen batteries. Adv. Mater. 29, 1606552 (2017).

    Article  CAS  Google Scholar 

  34. Bai, S. Y., Liu, X. Z., Zhu, K., Wu, S. C. & Zhou, H. S. Metal–organic framework-based separator for lithium–sulfur batteries. Nat. Energy 1, 16094 (2016).

    Article  CAS  Google Scholar 

  35. Song, Z., Qian, Y., Otani, M. & Zhou, H. Stable Li–organic batteries with nafion-based sandwich-type separators. Adv. Energy Mater. 6, 1501780 (2016).

    Article  CAS  Google Scholar 

  36. Denny, M. S. Jr, Moreton, J. C., Benz, L. & Cohen, S. M. Metal–organic frameworks for membrane-based separations. Nat. Rev. Mater. 1, 16078 (2016).

    Article  CAS  Google Scholar 

  37. Koros, W. J. & Zhang, C. Materials for next-generation molecularly selective synthetic membranes. Nat. Mater. 16, 289–297 (2017).

    Article  CAS  Google Scholar 

  38. Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).

    Article  CAS  Google Scholar 

  39. Li, W. et al. Ultrathin metal–organic framework membrane production by gel–vapour deposition. Nat. Commun. 8, 406 (2017).

    Article  CAS  Google Scholar 

  40. Tian, T. et al. A sol-gel monolithic metal–organic framework with enhanced methane uptake. Nat. Mater. 17, 174–179 (2018).

    Article  CAS  Google Scholar 

  41. Yokoji, T., Kameyama, Y., Maruyama, N. & Matsubara, H. High-capacity organic cathode active materials of 2,2′-bis-p-benzoquinone derivatives for rechargeable batteries. J. Mater. Chem. A 4, 5457–5466 (2016).

    Article  CAS  Google Scholar 

  42. Miao, L. C. et al. The structure–electrochemical property relationship of quinone electrodes for lithium-ion batteries. Phys. Chem. Chem. Phys. 20, 13478–13484 (2018).

    Article  CAS  Google Scholar 

  43. Fairen-Jimenez, D. et al. Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations. J. Am. Chem. Soc. 133, 8900–8902 (2011).

    Article  CAS  Google Scholar 

  44. Wang, B., Cote, A. P., Furukawa, H., O’Keeffe, M. & Yaghi, O. M. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453, 207–211 (2008).

    Article  CAS  Google Scholar 

  45. Huang, A. S., Liu, Q., Wang, N. Y., Zhu, Y. Q. & Caro, J. Bicontinuous zeolitic imidazolate framework ZIF-8@GO membrane with enhanced hydrogen selectivity. J. Am. Chem. Soc. 136, 14686–14689 (2014).

    Article  CAS  Google Scholar 

  46. Schon, T. B., McAllister, B. T., Li, P. F. & Seferos, D. S. The rise of organic electrode materials for energy storage. Chem. Soc. Rev. 45, 6345–6406 (2016).

    Article  CAS  Google Scholar 

  47. Anh, N. V. & Williams, R. M. Bis-semiquinone (bi-radical) formation by photoinduced proton coupled electron transfer in covalently linked catechol–quinone systems: Aviram’s hemiquinones revisited. Photoch. Photobio. Sci. 11, 957–961 (2012).

    Article  CAS  Google Scholar 

  48. Zhu, Y., Xiao, S., Shi, Y., Yang, Y. & Wu, Y. A trilayer poly(vinylidene fluoride)/polyborate/poly(vinylidene fluoride) gel polymer electrolyte with good performance for lithium ion batteries. J. Mater. Chem. A 1, 7790–7797 (2013).

    Article  CAS  Google Scholar 

  49. Li, W. et al. A PEO-based gel polymer electrolyte for lithium ion batteries. RSC Adv. 7, 23494–23501 (2017).

    Article  CAS  Google Scholar 

  50. Vadehra, G. S., Maloney, R. P., Garcia-Garibay, M. A. & Dunn, B. Naphthalene diimide based materials with adjustable redox potentials: evaluation for organic lithium-ion batteries. Chem. Mater. 26, 7151–7157 (2014).

    Article  CAS  Google Scholar 

  51. Li, H. et al. 2,2′-Bis(3-hydroxy-1,4-naphthoquinone)/CMK-3 nanocomposite as cathode material for lithium-ion batteries. Inorg. Chem. Front. 1, 193–199 (2014).

    Article  CAS  Google Scholar 

  52. Gaussian 16 Rev. B.01 (Gaussian Inc., 2016).

  53. Lee, C. T., Yang, W. T. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  54. Schafer, A., Huber, C. & Ahlrichs, R. Fully optimized contracted Gaussian-basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 100, 5829–5835 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Creative Materials Discovery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2017M3D1A1039553). This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (no. 2018R1A2A1A05079249), and project code (IBS-R006-A2). S.B. acknowledges the Korea Research Fellowship (KRF) Program through the National Research Foundation of Korea funded by the Ministry of Science and ICT (project no. 2018H1D3A1A01039450).

Author information

Authors and Affiliations

Authors

Contributions

K.K. and S.B. conceived the original idea for this work. S.B. designed and performed the experiments. B.K. performed the DFT calculation and discussed the main idea of the manuscript. C.K. and D.L. helped synthesize the electrode materials of Me2BBQ, BNQ and BHNQ. O.T. helped analyse the SEM images. H.P. helped analyse the ultraviolet–visible spectra. H.P. and J.K. helped the data analysis. S.B. wrote a draft of the manuscript, and K.K. revised it. All of the authors discussed the results of the manuscript. K.K. supervised all of the work.

Corresponding author

Correspondence to Kisuk Kang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Birgit Esser, Kian Ping Loh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–43, Tables 1–4 and Notes 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, S., Kim, B., Kim, C. et al. Permselective metal–organic framework gel membrane enables long-life cycling of rechargeable organic batteries. Nat. Nanotechnol. 16, 77–84 (2021). https://doi.org/10.1038/s41565-020-00788-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-020-00788-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing