Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Proton-driven transformable nanovaccine for cancer immunotherapy


Cancer vaccines hold great promise for improved cancer treatment. However, endosomal trapping and low immunogenicity of tumour antigens usually limit the efficiency of vaccination strategies. Here, we present a proton-driven nanotransformer-based vaccine, comprising a polymer–peptide conjugate-based nanotransformer and loaded antigenic peptide. The nanotransformer-based vaccine induces a strong immune response without substantial systemic toxicity. In the acidic endosomal environment, the nanotransformer-based vaccine undergoes a dramatic morphological change from nanospheres (about 100 nanometres in diameter) into nanosheets (several micrometres in length or width), which mechanically disrupts the endosomal membrane and directly delivers the antigenic peptide into the cytoplasm. The re-assembled nanosheets also boost tumour immunity via activation of specific inflammation pathways. The nanotransformer-based vaccine effectively inhibits tumour growth in the B16F10-OVA and human papilloma virus-E6/E7 tumour models in mice. Moreover, combining the nanotransformer-based vaccine with anti-PD-L1 antibodies results in over 83 days of survival and in about half of the mice produces complete tumour regression in the B16F10 model. This proton-driven transformable nanovaccine offers a robust and safe strategy for cancer immunotherapy.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic illustration of a proton-driven NTV for cancer immunotherapy.
Fig. 2: Design and characterization of the NTV.
Fig. 3: NTV2 induces strong and sustained cross-presentation to CD8+ T-cells.
Fig. 4: NTV2 promotes AP delivery to lymph nodes and elicits cytotoxic lymphocyte responses.
Fig. 5: NTV2 inhibits tumour growth and prolongs survival in tumour-bearing mice.
Fig. 6: Neoantigen peptide-loaded NTV2 in combination with anti-PD-L1 for efficient cancer immunotherapy in the B16F10 model.

Data availability

All relevant data during the study are available from the corresponding authors upon request. Source data are provided with this paper.


  1. 1.

    Irvine, D. J., Hanson, M. C., Rakhra, K. & Tokatlian, T. Synthetic nanoparticles for vaccines and immunotherapy. Chem. Rev. 115, 11109–11146 (2015).

    CAS  Google Scholar 

  2. 2.

    Kuai, R., Ochyl, L. J., Bahjat, K. S., Schwendeman, A. & Moon, J. J. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat. Mater. 161, 489–496 (2016).

    Google Scholar 

  3. 3.

    Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017).

    CAS  Google Scholar 

  4. 4.

    Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017).

    CAS  Google Scholar 

  5. 5.

    Goldberg, M. S. Immunoengineering: how nanotechnology can enhance cancer immunotherapy. Cell 161, 201–204 (2015).

    CAS  Google Scholar 

  6. 6.

    Chou, L. Y., Ming, K. & Chan, W. C. Strategies for the intracellular delivery of nanoparticles. Chem. Soc. Rev. 40, 233–245 (2011).

    CAS  Google Scholar 

  7. 7.

    Yin, H. et al. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15, 541–555 (2014).

    CAS  Google Scholar 

  8. 8.

    Douat, C. et al. A cell-penetrating foldamer with a bioreducible linkage for intracellular delivery of DNA. Angew. Chem. Int. Ed. 54, 11133–11137 (2015).

    CAS  Google Scholar 

  9. 9.

    D’Astolfo, D. S. et al. Efficient intracellular delivery of native proteins. Cell 161, 674–690 (2015).

    Google Scholar 

  10. 10.

    Stewart, M. P. et al. In vitro and ex vivo strategies for intracellular delivery. Nature 538, 183–192 (2016).

    CAS  Google Scholar 

  11. 11.

    Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    CAS  Google Scholar 

  12. 12.

    Kanasty, R., Dorkin, J. R., Vegas, A. & Anderson, D. Delivery materials for siRNA therapeutics. Nat. Mater. 12, 967–977 (2013).

    CAS  Google Scholar 

  13. 13.

    Luo, M. et al. A STING-activating nanovaccine for cancer immunotherapy. Nat. Nanotech. 12, 648–654 (2017).

    CAS  Google Scholar 

  14. 14.

    Cheng, Y., Yumul, R. C. & Pun, S. H. Virus-inspired polymer for efficient in vitro and in vivo gene delivery. Angew. Chem. Int. Ed. 128, 12192–12196 (2016).

    Google Scholar 

  15. 15.

    Martens, T. F., Remaut, K., Demeester, J., De Smedt, S. C. & Braeckmans, K. Intracellular delivery of nanomaterials: how to catch endosomal escape in the act. Nano Today 9, 344–364 (2014).

    CAS  Google Scholar 

  16. 16.

    Akishiba, M. et al. Cytosolic antibody delivery by lipid-sensitive endosomolytic peptide. Nat. Chem. 9, 751–761 (2017).

    CAS  Google Scholar 

  17. 17.

    Cheng, C. J. et al. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature 518, 107–110 (2015).

    CAS  Google Scholar 

  18. 18.

    Keller, S. et al. Neutral polymer micelle carriers with pH-responsive, endosome-releasing activity modulate antigen trafficking to enhance CD8+ T cell responses. J. Control. Release 191, 24–33 (2014).

    CAS  Google Scholar 

  19. 19.

    Shae, D. et al. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nat. Nanotech. 14, 269–278 (2019).

    CAS  Google Scholar 

  20. 20.

    Wilson, J. T. et al. Enhancement of MHC-I antigen presentation via architectural control of pH-responsive, endosomolytic polymer nanoparticles. AAPS J. 17, 358–369 (2015).

    CAS  Google Scholar 

  21. 21.

    Xia, X. et al. Porous silicon microparticle potentiates anti-tumor immunity by enhancing cross-presentation and inducing type interferon response. Cell Rep. 11, 957–966 (2015).

    CAS  Google Scholar 

  22. 22.

    Morishita, M., Takahashi, Y., Matsumoto, A., Nishikawa, M. & Takakura, Y. Exosome-based tumor antigens-adjuvant co-delivery utilizing genetically engineered tumor cell-derived exosomes with immunostimulatory CpG DNA. Biomaterials 111, 55–65 (2016).

    CAS  Google Scholar 

  23. 23.

    Wilson, D. S. et al. Antigens reversibly conjugated to a polymeric glyco-adjuvant induce protective humoral and cellular immunity. Nat. Mater. 18, 175–185 (2019).

    CAS  Google Scholar 

  24. 24.

    Riley, R. S., June, C. H., Langer, R. & Mitchell, M. J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 18, 175–196 (2019).

    CAS  Google Scholar 

  25. 25.

    Tanyi, J. L. et al. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci. Transl. Med. 10, eaao5931 (2018).

    Google Scholar 

  26. 26.

    Chiefari, J. et al. Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 31, 5559–5562 (1998).

    CAS  Google Scholar 

  27. 27.

    Zhou, J., Du, X., Yamagata, N. & Xu, B. Enzyme-instructed self-assembly of small d-peptides as a multiple-step process for selectively killing cancer cells. J. Am. Chem. Soc. 138, 3813–3823 (2016).

    CAS  Google Scholar 

  28. 28.

    Zhong, Y. et al. Hyaluronic acid-shelled acid-activatable paclitaxel prodrug micelles effectively target and treat CD44-overexpressing human breast tumor xenografts in vivo. Biomaterials 84, 250–261 (2016).

    CAS  Google Scholar 

  29. 29.

    Zambaux, M. et al. Influence of experimental parameters on the characteristics of poly (lactic acid) nanoparticles prepared by a double emulsion method. J. Control. Release 50, 31–40 (1998).

    CAS  Google Scholar 

  30. 30.

    Wilhelm, C., Cebers, A., Bacri, J.-C. & Gazeau, F. Deformation of intracellular endosomes under a magnetic field. Eur. Biophys. J. 32, 655–660 (2003).

    CAS  Google Scholar 

  31. 31.

    Gong, N. et al. Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment. Nat. Nanotech. 14, 379–387 (2019).

    CAS  Google Scholar 

  32. 32.

    Qiu, L. et al. Self-assembled pH-responsive hyaluronic acid–g-poly (l-histidine) copolymer micelles for targeted intracellular delivery of doxorubicin. Acta Biomater. 10, 2024–2035 (2014).

    CAS  Google Scholar 

  33. 33.

    Alam, M. M. et al. Endogenous inspired biomineral-installed hyaluronan nanoparticles as pH-responsive carrier of methotrexate for rheumatoid arthritis. J. Control. Release 252, 62–72 (2017).

    CAS  Google Scholar 

  34. 34.

    Zhang, Z. et al. Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv. Mater. 24, 1418–1423 (2012).

    CAS  Google Scholar 

  35. 35.

    Petersen, N. H., Kirkegaard, T. & Jäättelä, M. Lysosomal stability assay. Bio Protoc. 4, e1162 (2014).

    Google Scholar 

  36. 36.

    Aits, S. et al. Sensitive detection of lysosomal membrane permeabilization by lysosomal galectin puncta assay. Autophagy 11, 1408–1424 (2015).

    CAS  Google Scholar 

  37. 37.

    Goel, S. et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature 548, 471 (2017).

    CAS  Google Scholar 

  38. 38.

    Fan, Y. et al. Immunogenic cell death amplified by co-localized adjuvant delivery for cancer immunotherapy. Nano Lett. 17, 7387–7393 (2017).

    CAS  Google Scholar 

  39. 39.

    Duan, F. et al. A simple and powerful co-delivery system based on pH-responsive metal-organic frameworks for enhanced cancer immunotherapy. Biomaterials 122, 23–33 (2017).

    CAS  Google Scholar 

  40. 40.

    Li, A. V. et al. Generation of effector memory T cell-based mucosal and systemic immunity with pulmonary nanoparticle vaccination. Sci. Transl. Med. 5, 204ra130 (2013).

    Google Scholar 

  41. 41.

    Rosenthal, A. K. & Ryan, L. M. Calcium pyrophosphate deposition disease. N. Engl. J. Med. 374, 2575–2584 (2016).

    CAS  Google Scholar 

  42. 42.

    Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    CAS  Google Scholar 

  43. 43.

    Heneka, M. T. et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493, 674–678 (2013).

    CAS  Google Scholar 

  44. 44.

    Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β-dependent adaptive immunity against tumors. Nat. Med. 15, 1170–1178 (2009).

    CAS  Google Scholar 

  45. 45.

    Coll, R. C. et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 21, 248–255 (2015).

    CAS  Google Scholar 

  46. 46.

    Brewer, J. M. et al. Aluminium hydroxide adjuvant initiates strong antigen-specific Th2 responses in the absence of IL-4-or IL-13-mediated signaling. J. Immunol. 163, 6448–6454 (1999).

    CAS  Google Scholar 

  47. 47.

    Garaude, J., Kent, A., van Rooijen, N. & Blander, J. M. Simultaneous targeting of toll-and nod-like receptors induces effective tumor-specific immune responses. Sci. Transl. Med. 4, 120ra116 (2012).

    Google Scholar 

  48. 48.

    Guo, Y., Lei, K. & Tang, L. Neoantigen vaccine delivery for personalized anticancer immunotherapy. Front. Immunol. 9, 1499 (2018).

    Google Scholar 

  49. 49.

    Chu, Y., Liu, Q., Wei, J. & Liu, B. Personalized cancer neoantigen vaccines come of age. Theranostics 8, 4238 (2018).

    CAS  Google Scholar 

  50. 50.

    Li, A. W. et al. A facile approach to enhance antigen response for personalized cancer vaccination. Nat. Mater. 17, 528 (2018).

    CAS  Google Scholar 

  51. 51.

    Niikura, K. et al. Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS nano 7, 3926–3938 (2013).

    CAS  Google Scholar 

  52. 52.

    Yang, Y.-Y., Chung, T.-S. & Ng, N. P. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials 22, 231–241 (2001).

    CAS  Google Scholar 

  53. 53.

    Ellens, H., Bentz, J. & Szoka, F. C. pH-induced destabilization of phosphatidylethanolamine-containing liposomes: role of bilayer contact. Biochemistry 23, 1532–1538 (1984).

    CAS  Google Scholar 

Download references


This work was financially supported by the National Natural Science Foundation of China (grant numbers 31630027, 31430031, 21327806, 21621003 and 21235004) and NSFC-German Research Foundation (DFG) project (grant number 31761133013). We are grateful for support from the Strategic Priority Research Program of the Chinese Academy of Sciences (grant numbers XDA09030301 and XDB36000000), the National Key Research and Development Program of China (grant numbers 2018YFE0117800 and 2016YFA0203101). We also acknowledge support from the NIH/NIMHHD (grant number U54MD007597). We thank Z. Ao for help with the AFM measurements and X. Hu and H. Guo for help with the TEM analysis.

Author information




N.G., J.L. and X.-J.L. conceived and designed the experiments. N.G., Y.Z., X.T., Yongchao Wang, S.H., G.Q., Q.N., X.L., J.W., X.Y., T.Z., S.C. and Yongji Wang performed the experiments. N.G., X.Y., T.Z., J.L. and X.-J.L. analysed the results. J.Y., Y.G., J.Z., P.C.W and M.J.M. developed the discussion. N.G., J.L. and X.-J.L. wrote the manuscript. J.L. and X.-J.L. supervised the entire project. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Jinghong Li or Xing-Jie Liang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Peer review information Nature Nanotechnology thanks Rona Chandrawati, Bartosz Grzybowski, Jeffrey Hubbell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–42, Supplementary Tables 1–3.

Reporting Summary

Source data

Source Data Fig. 2

Numerical data used to generate graphs in Fig. 2

Source Data Fig. 3

Numerical data used to generate graphs in Fig. 3

Source Data Fig. 4

Numerical data used to generate graphs in Fig. 4

Source Data Fig. 5

Numerical data used to generate graphs in Fig. 5

Source Data Fig. 6

Numerical data used to generate graphs in Fig. 6

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gong, N., Zhang, Y., Teng, X. et al. Proton-driven transformable nanovaccine for cancer immunotherapy. Nat. Nanotechnol. 15, 1053–1064 (2020).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research