Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A Gd@C82 single-molecule electret


Electrets are dielectric materials that have a quasi-permanent dipole polarization. A single-molecule electret is a long-sought-after nanoscale component because it can lead to miniaturized non-volatile memory storage devices. The signature of a single-molecule electret is the switching between two electric dipole states by an external electric field. The existence of these electrets has remained controversial because of the poor electric dipole stability in single molecules. Here we report the observation of a gate-controlled switching between two electronic states in Gd@C82. The encapsulated Gd atom forms a charged centre that sets up two single-electron transport channels. A gate voltage of ±11 V (corresponding to a coercive field of ~50 mV Å–1) switches the system between the two transport channels with a ferroelectricity-like hysteresis loop. Using density functional theory, we assign the two states to two different permanent electrical dipole orientations generated from the Gd atom being trapped at two different sites inside the C82 cage. The two dipole states are separated by a transition energy barrier of 11 meV. The conductance switching is then attributed to the electric-field-driven reorientation of the individual dipole, as the coercive field provides the necessary energy to overcome the transition barrier.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Single-electron transport of the Gd@C82 SMD.
Fig. 2: Gate-controlled switching between the two molecular states showing a ferroelectricity-like hysteresis loop.
Fig. 3: Simulating a two-resistance-state operation based on the SMD switching.
Fig. 4: Density functional theory calculations revealing the SME physics.

Data availability

The data shown in the paper are available at Source data are provided with this paper.

Code availability

The density functional theory program used to analyse the results is available from the corresponding author on reasonable request.


  1. 1.

    Waldrop, M. M. The chips are down for Moore’s law. Nature 530, 144–147 (2016).

    CAS  Google Scholar 

  2. 2.

    Huang, Y. L. et al. Reversible single-molecule switching in an ordered monolayer molecular dipole array. Small 8, 1423–1428 (2012).

    CAS  Google Scholar 

  3. 3.

    Zhang, J. L. et al. Towards single molecule switches. Chem. Soc. Rev. 44, 2998–3022 (2015).

    CAS  Google Scholar 

  4. 4.

    Jia, C. et al. Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science 352, 1443–1445 (2016).

    CAS  Google Scholar 

  5. 5.

    Blum, A. S. et al. Molecularly inherent voltage-controlled conductance switching. Nat. Mater. 4, 167–172 (2005).

    CAS  Google Scholar 

  6. 6.

    Wagner, S. et al. Switching of a coupled spin pair in a single-molecule junction. Nat. Nanotechnol. 8, 575–579 (2013).

    CAS  Google Scholar 

  7. 7.

    Diez-Perez, I. et al. Rectification and stability of a single molecular diode with controlled orientation. Nat. Chem. 1, 635–641 (2009).

    CAS  Google Scholar 

  8. 8.

    Capozzi, B. et al. Single-molecule diodes with high rectification ratios through environmental control. Nat. Nanotechnol. 10, 522–527 (2015).

    CAS  Google Scholar 

  9. 9.

    Batra, A. et al. Tuning rectification in single-molecular diodes. Nano Lett. 13, 6233–6237 (2013).

    CAS  Google Scholar 

  10. 10.

    Sherif, S. et al. Current rectification in a single molecule diode: the role of electrode coupling. Nanotechnology 26, 291001 (2015).

    Google Scholar 

  11. 11.

    Park, H. et al. Nanomechanical oscillations in a single-C60 transistor. Nature 407, 57–60 (2000).

    CAS  Google Scholar 

  12. 12.

    Lau, C. S. et al. Redox-dependent Franck-Condon blockade and avalanche transport in a graphene-fullerene single-molecule transistor. Nano Lett. 16, 170–176 (2016).

    CAS  Google Scholar 

  13. 13.

    Vincent, R., Klyatskaya, S., Ruben, M., Wernsdorfer, W. & Balestro, F. Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 488, 357–360 (2012).

    CAS  Google Scholar 

  14. 14.

    Kubatkin, S. et al. Single-electron transistor of a single organic molecule with access to several redox states. Nature 425, 698–701 (2003).

    CAS  Google Scholar 

  15. 15.

    Bai, Z. B. et al. A silicon cluster based single electron transistor with potential room-temperature switching. Chin. Phys. Lett. 35, 037301 (2018).

    Google Scholar 

  16. 16.

    Gao, L. et al. Graphene-DNAzyme junctions: a platform for direct metal ion detection with ultrahigh sensitivity. Chem. Sci. 6, 2469–2473 (2015).

    CAS  Google Scholar 

  17. 17.

    Xiao, X., Xu, B. & Tao, N. Changes in the conductance of single peptide molecules upon metal-ion binding. Angew. Chem. Int. Ed. 43, 6148–6152 (2004).

    CAS  Google Scholar 

  18. 18.

    Evangeli, C. et al. Engineering the thermopower of C60 molecular junctions. Nano Lett. 13, 2141–2145 (2013).

    CAS  Google Scholar 

  19. 19.

    Kato, C. et al. Giant hysteretic single-molecule electric polarization switching above room temperature. Angew. Chem. Int. Ed. 57, 13429–13432 (2018).

    CAS  Google Scholar 

  20. 20.

    Pasupathy, A. N. et al. Vibration-assisted electron tunneling in C140 transistors. Nano Lett. 5, 203–207 (2005).

    CAS  Google Scholar 

  21. 21.

    Yu, L. H. & Natelson, D. The Kondo effect in C60 single-molecule transistors. Nano Lett. 4, 79–83 (2004).

    CAS  Google Scholar 

  22. 22.

    Roch, N., Florens, S., Bouchiat, V., Wernsdorfer, W. & Balestro, F. Quantum phase transition in a single-molecule quantum dot. Nature 453, 633–637 (2008).

    CAS  Google Scholar 

  23. 23.

    Winkelmann, C. B., Roch, N., Wernsdorfer, W., Bouchiat, V. & Balestro, F. Superconductivity in a single-C60 transistor. Nat. Phys. 5, 876–879 (2009).

    CAS  Google Scholar 

  24. 24.

    Danilov, A. V., Kubatkin, S. E., Kafanov, S. G. & Bjornholm, T. Strong electronic coupling between single C60 molecules and gold electrodes prepared by quench condensation at 4 K. A single molecule three terminal device study. Faraday Discuss. 131, 337–345 (2006).

    CAS  Google Scholar 

  25. 25.

    Rosseinsky, M. J. et al. Superconductivity at 28 K in RbXC60. Phys. Rev. Lett. 66, 2830–2832 (1991).

    CAS  Google Scholar 

  26. 26.

    Morton, J. J. L. et al. Environmental effects on electron spin relaxation in N@C60. Phys. Rev. B 76, 085418 (2007).

    Google Scholar 

  27. 27.

    Funasaka, H., Sugiyama, K., Yamamoto, K. & Takahashi, T. Magnetic properties of rare-earth metallofullerenes. J. Phys. Chem. 99, 1826–1830 (1995).

    CAS  Google Scholar 

  28. 28.

    Huang, H., Yang, S. & Zhang, X. Magnetic properties of heavy rare-earth metallofullerenes M@C82 (M = Gd, Tb, Dy, Ho, and Er). J. Phys. Chem. B 104, 1473–1482 (2000).

    CAS  Google Scholar 

  29. 29.

    de Nadai, C. et al. Local magnetism in rare-earth metals encapsulated in fullerenes. Phys. Rev. B 69, 184421 (2004).

    Google Scholar 

  30. 30.

    Kitaura, R., Okimoto, H., Shinohara, H., Nakamura, T. & Osawa, H. Magnetism of the endohedral metallofullerenes M@C82 (M = Gd, Dy) and the corresponding nanoscale peapods: synchrotron soft X-ray magnetic circular dichroism and density-functional theory calculations. Phys. Rev. B 76, 172409 (2007).

    Google Scholar 

  31. 31.

    Okamura, N., Yoshida, K., Sakata, S. & Hirakawa, K. Electron transport in endohedral metallofullerene Ce@C82 single-molecule transistors. Appl. Phys. Lett. 106, 043108 (2015).

    Google Scholar 

  32. 32.

    Laasonen, K., Andreoni, W. & Parrinello, M. Structural and electronic properties of La@C82. Science 258, 1916–1918 (1992).

    CAS  Google Scholar 

  33. 33.

    Nuttall, C. J., Hayashi, Y., Yamazaki, K., Mitani, T. & Iwasa, Y. Dipole dynamics in the endohedral metallofullerene La@C82. Adv. Mater. 14, 293–296 (2002).

    CAS  Google Scholar 

  34. 34.

    Thijssen, J. M. & van der Zant, H. S. J. Charge transport and single-electron effects in nanoscale systems. Phys. Status Solidi B 245, 1455–1470 (2008).

    CAS  Google Scholar 

  35. 35.

    Quan, X. & Hutchison, G. R. Single molecule ferroelectrics via conformational inversion: an electronic structure investigation. Preprint at (2017).

  36. 36.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  37. 37.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Google Scholar 

  38. 38.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  39. 39.

    Lee, K., Murray, É. D., Kong, L., Lundqvist, B. I. & Langreth, D. C. Higher-accuracy van der Waals density functional. Phys. Rev. B 82, 081101 (2010).

    Google Scholar 

  40. 40.

    Dion, M., Rydberg, H., Schroder, E., Langreth, D. C. & Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004).

    CAS  Google Scholar 

  41. 41.

    Klimeš, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).

    Google Scholar 

  42. 42.

    Hong, J. et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 6, 6293 (2015).

    CAS  Google Scholar 

  43. 43.

    Qiao, J., Kong, X., Hu, Z. X., Yang, F. & Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014).

    CAS  Google Scholar 

  44. 44.

    Qiao, J. et al. Few-layer tellurium: one-dimensional-like layered elementary semiconductor with striking physical properties. Sci. Bull. 63, 159–168 (2018).

    CAS  Google Scholar 

  45. 45.

    Zhao, Y. et al. Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv. Mater. 28, 2399–2407 (2016).

    CAS  Google Scholar 

  46. 46.

    Zhao, Y. et al. High‐electron‐mobility and air‐stable 2D layered PtSe2 FETs. Adv. Mater. 29, 1604230 (2017).

    Google Scholar 

  47. 47.

    Sheppard, D., Terrell, R. & Henkelman, G. Optimization methods for finding minimum energy paths. J. Chem. Phys. 128, 134106 (2008).

    Google Scholar 

  48. 48.

    Sheppard, D., Xiao, P., Chemelewski, W., Johnson, D. D. & Henkelman, G. A generalized solid-state nudged elastic band method. J. Chem. Phys. 136, 074103 (2012).

    Google Scholar 

  49. 49.

    Neugebauer, J. & Scheffler, M. Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Phys. Rev. B 46, 16067–16080 (1992).

    CAS  Google Scholar 

  50. 50.

    Ding, W. et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat. Commun. 8, 14956 (2017).

    CAS  Google Scholar 

  51. 51.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Google Scholar 

  52. 52.

    Petersen, M., Hafner, J. & Marsman, M. Structural, electronic and magnetic properties of Gd investigated by DFT+U methods: bulk, clean and H-covered (0001) surfaces. J. Phys. Condens. Matter 18, 7021–7043 (2006).

    CAS  Google Scholar 

  53. 53.

    Tao, K. et al. Self-consistent determination of Hubbard U for explaining the anomalous magnetism of the Gd13 cluster. Phys. Rev. B 89, 085103 (2014).

    Google Scholar 

  54. 54.

    Harmon, B. N., Antropov, V. P., Liechtenstein, A. I., Solovyev, I. V. & Anisimov, V. I. Calculation of magneto-optical properties for 4f systems: LSDA + Hubbard U results. J. Phys. Chem. Solids 56, 1521–1524 (1995).

    CAS  Google Scholar 

Download references


We gratefully acknowledge the financial support of the National Key R&D Program of China (2017YFA0303203, 2018YFE0202700, 2018YFA0306004 and 2016YFA0300101), the National Natural Science Foundation of China (U1732273, 21973038, 91961101, 61761166009, 11522432, 11574217, U1732159, 61822403, 11874203, 11904166, 11622437, 61674171, 11974422, 21721001, 91961112, 11227904, 61521001 and 61801209), the Strategic Priority Research Program of Chinese Academy of Sciences (grant no. XDB30000000), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (grants no. 16XNLQ01 and 19XNQ025), the Fundamental Research Funds for the Central Universities (020414380082, 020414380127, 020414380150 and 020414380151) and the opening Project of the Wuhan National High Magnetic Field Center. C.W. was supported by the Outstanding Innovative Talents Cultivation Funded Programs 2017 of Renmin University of China. Calculations were performed at the Physics Lab of High-Performance Computing of Renmin University of China and Shanghai Supercomputer Center. S.-F.S. acknowledges support from NSF Career Grant DMR-1945420 and NYSTAR through Focus Center-NY–RPI contract C150117. We thank H.-L. Cai from Nanjing University for stimulating discussions. We also thank S.-T. Zhang from Nanjing University for preparing bulk materials.

Author information




F.S. conceived the research and B.W., W.J., S.-Y.X., S.-F.S. and M.A.R. co-supervised the project. M.Z. performed the bulk material measurements. C.W. and W.J. performed and analysed the density functional theory calculations. Z.B. designed and fabricated the devices. K.Z. performed the SMD measurements. F.-F.X. performed high-performance liquid chromatography for purification of the molecular materials. Y.-Z.T. participated in the separation of the molecular materials. S.-Y.X. prepared the molecular materials. X.T. and D.P. assisted in the device fabrication. Y.G. and J.W. assisted with the density functional theory calculations. K.Z., C.W., F.S., W.J. and M.A.R. wrote the paper. K.-J.H., L.C., S.Z., L.K., J.C., P.W., X.W., J.L., Y.S. and G.W. participated in discussions on this manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Fengqi Song or Wei Ji or Su-Yuan Xie or Su-Fei Shi or Mark A. Reed.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Sadafumi Nishihara and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, Tables 1–4 and refs. 1–3.

Source data

Source Data Fig. 1

Statistical Source Data

Source Data Fig. 2

Statistical Source Data

Source Data Fig. 3

Statistical Source Data

Source Data Fig. 4

Statistical Source Data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Wang, C., Zhang, M. et al. A Gd@C82 single-molecule electret. Nat. Nanotechnol. 15, 1019–1024 (2020).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research