Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Thickness-controlled black phosphorus tunnel field-effect transistor for low-power switches

Abstract

The continuous down-scaling of transistors has been the key to the successful development of current information technology. However, with Moore’s law reaching its limits, the development of alternative transistor architectures is urgently needed1. Transistors require a switching voltage of at least 60 mV for each tenfold increase in current, that is, a subthreshold swing (SS) of 60 mV per decade (dec). Alternative tunnel field-effect transistors (TFETs) are widely studied to achieve a sub-thermionic SS and high I60 (the current where SS becomes 60 mV dec–1)2. Heterojunction (HJ) TFETs show promise for delivering a high I60, but experimental results do not meet theoretical expectations due to interface problems in the HJs constructed from different materials. Here, we report a natural HJ-TFET with spatially varying layer thickness in black phosphorus without interface problems. We have achieved record-low average SS values over 4–5 dec of current (SSave_4dec ~22.9 mV dec–1 and SSave_5dec ~26.0 mV dec–1) with record-high I60 (I60 = 0.65–1 μA μm–1), paving the way for application in low-power switches.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BP band properties and transfer curves for two fabricated BP NHJ-TFETs at |VD| ≤ 0.7 V.
Fig. 2: Temperature-dependent transfer curves originating from two different carrier injection mechanisms: BTBT and thermal injection.
Fig. 3: Performance comparison of the BP NHJ-TFETs with previous n-type TFETs reporting sub-thermionic SSave_4dec and a state-of-the-art Intel 14-nm Si MOSFET.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request.

References

  1. Mack, C. A. Fifty years of Moore’s law. IEEE Trans. Semicond. Manuf. 24, 202–207 (2011).

    Article  Google Scholar 

  2. Vandenberghe, W. G. et al. Figure of merit for and identification of sub-60 mV/decade devices. Appl. Phys. Lett. 102, 013510 (2013).

    Article  Google Scholar 

  3. Pop, E. Energy dissipation and transport in nanoscale devices. Nano Res. 3, 147–169 (2010).

    Article  CAS  Google Scholar 

  4. International Roadmap for Devices and Systems (IRDS) 2017 Edition https://irds.ieee.org/roadmap-2017 (2017).

  5. Nikonov, D. E. & Young, I. A. Overview of beyond-CMOS devices and a uniform methodology for their benchmarking. Proc. IEEE 101, 2498–2533 (2013).

    Article  CAS  Google Scholar 

  6. Seabaugh, A. et. al., Steep slope transistors: tunnel FETs and beyond.proc. IEEE European Solid-State Device Research Conference (ESSDERC) 349–351 (IEEE, 2016).

  7. Tomioka, K., Yoshimura, M. & Fukui, T., Steep-slope tunnel field-effect transistors using III–V nanowire/Si heterojunction. In 2012 Symposium on VLSI Technology 47–48 (IEEE, 2012).

  8. Sarkar, D. et al. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526, 91–95 (2015).

    Article  CAS  Google Scholar 

  9. Knoch, J., Mantl, S. & Appenzeller, J. Impact of the dimensionality on the performance of tunneling FETs: bulk versus one-dimensional devices. Solid State Electron. 51, 572–578 (2007).

    Article  CAS  Google Scholar 

  10. Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014).

    Article  CAS  Google Scholar 

  11. Ionescu, A. M. & Riel, H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329–337 (2011).

    Article  CAS  Google Scholar 

  12. Verhulst, A. S., Vandenberghe, W. G., Maex, K. & Groeseneken, G. Boosting the on-current of a n-channel nanowire tunnel field-effect transistor by source material optimization. J. Appl. Phys. 104, 064514 (2008).

    Article  Google Scholar 

  13. Nayfeh, O. M. et al. Design of tunneling field-effect transistors using strained-silicon/strained-germanium type-II staggered heterojunctions. IEEE Electron Device Lett. 29, 1074–1077 (2008).

    Article  CAS  Google Scholar 

  14. Tran, V., Soklaski, R., Liang, Y. & Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014).

    Article  Google Scholar 

  15. Rasmussen, F. A. & Thygesen, K. S. Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. J. Phys. Chem. C 119, 13169–13183 (2015).

    Article  CAS  Google Scholar 

  16. Qiao, J., Kong, X., Hu, Z. X., Yang, F. & Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014).

    Article  CAS  Google Scholar 

  17. Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).

    Article  CAS  Google Scholar 

  18. Li, L. et al. Quantum Hall effect in black phosphorus two-dimensional electron system. Nat. Nanotechnol. 11, 593–597 (2016).

    Article  CAS  Google Scholar 

  19. Pan, Y. et al. Monolayer phosphorene−metal contacts. Chem. Mater. 28, 2100–2109 (2016).

    Article  CAS  Google Scholar 

  20. Sajjad, R. N., Chern, W., Hoyt, J. L. & Antoniadis, D. A. Trap assisted tunneling and its effect on subthreshold swing of tunnel FETs. IEEE Trans. Electron Devices 63, 4380–4387 (2016).

    Article  CAS  Google Scholar 

  21. Kang, J., Liu, W., Sarkar, D., Jena, D. & Banerjee, K. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys. Rev. X 4, 031005 (2014).

    Google Scholar 

  22. Tang, W., Rassay, S. S. & Ravindra, N. M. Electronic & optical properties of transition-metal dichalcogenides. Madridge J. Nanotechnol. Nanosci. 2, 58–64 (2017).

    Article  Google Scholar 

  23. Rahi, S. B., Ghosh, B. & Bishnoi, B. Temperature effect on hetero structure junctionless tunnel FET. J. Semicond. 36, 034002 (2015).

    Article  Google Scholar 

  24. Rahi, S. B., Asthana, P. & Gupta, S. Heterogate junctionless tunnel field-effect transistor: future of low-power devices. J. Comput. Electron. 16, 30–38 (2017).

    Article  CAS  Google Scholar 

  25. Abedini, M., Ziabari, S. A. S. & Eskandarin, A. A high-performance p-type based heterostructure electrically doped NTFET and representation of a neural network model. Appl. Phys. A 125, 318 (2019).

    Article  CAS  Google Scholar 

  26. Natarajan, S. et. al., A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 µm2 SRAM cell size. In 2014 IEEE International Electron Devices Meeting 3.7.1–3.7.3 (IEEE, 2014).

  27. Chen, F. W., Ilatikhameneh, H., Ameen, T. A., Klimeck, G. & Rahman, R. Thickness engineered tunnel field-effect transistors based on phosphorene. IEEE Electron Device Lett. 38, 130–133 (2017).

    Article  CAS  Google Scholar 

  28. Zomer, P. J., Guimaraes, M. H. D., Brant, J. C., Tombros, N. & van Wees, B. J. Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride. Appl. Phys. Lett. 105, 013101 (2014).

    Article  Google Scholar 

  29. Kim, J. et al. Anomalous polarization dependence of Raman scattering and crystallographic orientation of black phosphorus. Nanoscale 7, 18708–18715 (2015).

    Article  CAS  Google Scholar 

  30. Ling, X. et al. Anisotropic electron-photon and electron-phonon interactions in black phosphorus. Nano Lett. 16, 2260–2267 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Kim, A. Seabaugh, R. Sajjad, E. Yablonovitch, F. Liu, G. Klimeck, H. J. Choi and E. H. Hwang for helpful discussions. We also thank C. Lee for help with the dry-transfer technique. S. Cho acknowledges support from the Korea NRF (Grant no. 2019M3F3A1A03079760 and Grant no. 2016R1A5A1008184) and the KI 2019 Transdisciplinary Research Program. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by MEXT, Japan, A3 Foresight by JSPS and CREST (JPMJCR15F3), JST.

Author information

Authors and Affiliations

Authors

Contributions

S. Cho conceived and supervised the project. S.K. fabricated devices and performed measurements. G.M. and W.S. assisted with fabrication of devices. G.M. and S. Chang assisted with the Raman and photoluminescence measurement of the BP flakes. K.W. and T.T. grew high-quality hBN single crystals. G.M., W.S., H.L., B.K. and T.J. assisted with the low-temperature transport measurements. S. Cho and S.K. analysed the data and wrote the manuscript. All the authors contributed to editing the manuscript.

Corresponding author

Correspondence to Sungjae Cho.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–20, Table 1 and refs. 1–41.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Myeong, G., Shin, W. et al. Thickness-controlled black phosphorus tunnel field-effect transistor for low-power switches. Nat. Nanotechnol. 15, 203–206 (2020). https://doi.org/10.1038/s41565-019-0623-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-019-0623-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing