Abstract
Vertical cavity surface-emitting lasers (VCSELs) have made indispensable contributions to the development of modern optoelectronic technologies. However, arbitrary beam shaping of VCSELs within a compact system has remained inaccessible until now. The emerging ultra-thin flat optical structures, namely metasurfaces, offer a powerful technique to manipulate electromagnetic fields with subwavelength spatial resolution. Here, we show that the monolithic integration of dielectric metasurfaces with VCSELs enables remarkable arbitrary control of the laser beam profiles, including self-collimation, Bessel and Vortex lasers, with high efficiency. Such wafer-level integration of metasurface through VCSEL-compatible technology simplifies the assembling process and preserves the high performance of the VCSELs. We envision that our approach can be implemented in various wide-field applications, such as optical fibre communications, laser printing, smartphones, optical sensing, face recognition, directional displays and ultra-compact light detection and ranging (LiDAR).
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Recent advancements of metalenses for functional imaging
Nano Convergence Open Access 24 May 2023
-
Metasurface-stabilized optical microcavities
Nature Communications Open Access 27 February 2023
-
Resonators with tailored optical path by cascaded-mode conversions
Nature Communications Open Access 30 January 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




Data availability
The data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.
References
Koyama, F., Kinoshita, S. & Iga, K. Room temperature CW operation of GaAs vertical cavity surface emitting laser. Trans. IEICE E71, 1089–1090 (1988).
Iga, K. Surface emitting laser—its birth and generation of new optoelectronics field. IEEE J. Sel. Top. Quant. Electron. 6, 1201 (2000).
Larson, A. Advances in VCSELs for communication and sensing. IEEE J. Sel. Top. Quant. Electron. 17, 1552–1567 (2011).
Moser, P., Lott, J. A. & Bimberg, D. Energy efficiency of directly modulated oxide-confined high bit rate 850-nm VCSELs for optical interconnects. IEEE J. Sel. Top. Quant. Electron. 19, 1702212 (2013).
Pruijmboom, A. et al. Vertical-cavity surface emitting laser-diodes arrays expanding the range of high-power laser systems and applications. J. Laser Appl. 28, 032005 (2016).
Ebeling, K. J., Michalzik, R. & Moench, H. R. Vertical-cavity surface-emitting laser technology applications with focus on sensors and three-dimensional imaging. Jpn J. Appl. Phys. 57, 08PA02 (2018).
Danner, A. J., Raftery, J. J., Leisher, P. O. & Choquette, K. D. Single mode photonic crystal vertical cavity lasers. Appl. Phys. Lett. 88, 1114–1116 (2006).
Zhou, D. & Mawst, L. J. High power single mode antiresonant reflecting optical waveguide type vertical cavity surface emitting lasers. IEEE J. Quant. Electron. 38, 1599–1606 (2002).
Hirose, K. et al. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photon. 8, 406–411 (2014).
Huang, M. C. Y., Zhou, Y. & Chang-Hasnain, C. J. A surface-emitting laser incorporating a high index contrast subwavelength grating. Nat. Photon. 1, 119–122 (2007).
Qiao, P. F., Yang, W. J. & Chang-Hasnain, C. J. Recent advances in high-contrast metastructures, metasurfaces, and photonic crystals. Adv. Opt. Photonics 10, 180–245 (2018).
Jung, C. et al. 4.8 mW single mode oxide confined topsurface emitting vertical-cavity laser diodes. Electron. Lett. 33, 1790–1791 (1997).
Martinsson, H. et al. Transverse mode selection in large-area oxide-confined vertical-cavity surface-emitting lasers using a shallow surface relief. IEEE Photon. Technol. Lett. 11, 1536–1538 (1999).
Zhou, D. & Mawst, L. J. High-power single-mode antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting lasers. IEEE J. Quant. Electron. 38, 1599–1606 (2002).
Martinsson, H., Bengtsson, J., Ghisoni, M. & Larsson, A. Monolithic integration of vertical-cavity surface-emitting laser and diffractive optical element for advanced beam shaping. IEEE Photon. Technol. Lett. 11, 503–505 (1999).
Bardinal, V. et al. Collective micro-optics technologies for VCSEL photonic integration. Adv. Opt. Tech. 2011, 1–11 (2011).
Rastani, K., Orenstein, M., Kapon, E. & Von Lehmen, A. C. Integration of planar Fresnel microlenses with vertical-cavity surface-emitting laser arrays. Opt. Lett. 16, 919–921 (1991).
Karlsson, M. et al. Monolithic integration of continuous-relief diffractive structures with vertical-cavity surface-emitting lasers. IEEE Photon. Technol. Lett. 15, 359–361 (2003).
Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).
Lalanne, P., Astilean, S., Chavel, P., Cambril, E. & Launois, H. Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff. J. Opt. Soc. Am. A 16, 1143 (1999).
Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, 2472 (2016).
Wang, S. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227–232 (2018).
Burgos, S. P., Waele, R., Polman, A. & Atwater, H. A. A single-layer wide-angle negative-index metamaterial at visible frequencies. Nat. Mater. 9, 407–412 (2010).
Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).
Genevet, P., Capasso, F., Aieta, F., Khorasaninejad, M. & Devlin, R. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica 4, 139–152 (2017).
Arbabi, A., Arbabi, E., Horie, Y., Kamali, S. M. & Faraon, A. Planar metasurface retroreflector. Nat. Photon. 11, 415–420 (2017).
Hu, G. et al. Coherent steering of nonlinear chiral valley photons with a synthetic Au-WS2 metasurface. Nat. Photon. 13, 467–472 (2019).
Xu, L. et al. Metasurface external cavity laser. Appl. Phys. Lett. 107, 221105 (2015).
Xu, L. et al. Terahertz metasurface quantum-cascade VECSELs: theory and performance. IEEE J. Sel. Top. Quantum Electron. 23, 1200512 (2017).
Hashizume, J. & Koyama, F. Plasmon-enhancement of optical near-field of metal nanoaperture surface-emitting laser. Appl. Phys. Lett. 84, 3226–3228 (2004).
Rao, Z., Hesselink, L. & Harris, J. S. High transmission through ridge nano-apertures on vertical-cavity surface-emitting lasers. Opt. Express 15, 10427–10438 (2007).
Li, K., Rao, Y., Chase, C., Yang, W. J. & Chang-Hasnain, C. J. Monolithic high-contrast metastructure for beam-shaping VCSELs. Optica 5, 10–13 (2018).
Seghilani, M. S. et al. Vortex laser based on III-V semiconductor metasurface: direct generation of coherent Laguerre–Gauss modes carrying controlled orbital angular momentum. Sci. Rep. 6, 38156 (2016).
Arbabi, A., Briggs, R. M., Horie, Y., Bagheri, M. & Faraon, A. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers. Opt. Express 23, 33310–33317 (2015).
Arbabi, A., Horie, Y., Ball, A. J., Bagheri, M. & Faraon, A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 6, 7069 (2015).
Lalanne, P. & Chavel, P. Metalenses at visible wavelengths: past, present, perspectives. Laser Photonics Rev. 11, 1600295 (2017).
Acknowledgements
We acknowledge financial support from the National Key R&D Programme of China (grant no. 2018YFA0209000), the National Natural Science Foundation of China (grant nos. 61604007 and 61874145) and the Beijing Natural Science Foundation (grant nos. 4172009 and 4182012). P.-N.N., G.B. and P.G. acknowledge financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement FLATLIGHT no. 639109 and grant agreement i-LiDAR no. 874986). We acknowledge the Nanofabrication Laboratory at National Centre for Nanoscience and Technology for sample fabrication. We thank Y.B. Gao, Y.H. Zhang and Z.H. Zhang for fruitful discussions.
Author information
Authors and Affiliations
Contributions
Y.-Y.X., P.-N.N. and P.G. conceived the idea and coordinated the experiment. H.-D.C., C.X. and P.G. supervised the project. Y.-Y.X., Q.-H.W., Q.K. and P.-P.C. carried out the fabrication, built the optical setup and performed the measurement. P.-N.N., G.B., A.D., H.-R.R. and P.G. conducted numerical simulations and supported the experiment with theoretical analysis. Y.-Y.X., P.-N.N., Q.K., Z.-Z.Z., H.-D.C., C.X. and P.G. performed data analysis. Y.-Y.X., P.-N.N. and P.G. wrote the manuscript draft. All authors participated in improving the final version of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Nanotechnology thanks Holger Moench and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Notes 1–7, Figs. 1–21 and refs. 1–3.
Supplementary Video 1
Comparison of the collimation performance for both a bare VCSEL and a MS-VCSEL as a function of the propagation distance. This video confirms the collimation properties of metasurface for multi-mode laser emissions.
Supplementary Video 2
The beam profile of the MS-VCSEL recorded along the propagation direction demonstrates the build-up evolution of a laser vortex with OAM l = 5.
Rights and permissions
About this article
Cite this article
Xie, YY., Ni, PN., Wang, QH. et al. Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions. Nat. Nanotechnol. 15, 125–130 (2020). https://doi.org/10.1038/s41565-019-0611-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41565-019-0611-y
This article is cited by
-
Recent advancements of metalenses for functional imaging
Nano Convergence (2023)
-
Metasurface-stabilized optical microcavities
Nature Communications (2023)
-
Sub-picosecond steering of ultrafast incoherent emission from semiconductor metasurfaces
Nature Photonics (2023)
-
Resonators with tailored optical path by cascaded-mode conversions
Nature Communications (2023)
-
Directional emissions from perovskite nanocrystals thin film enabled by metasurface integration through one step spin-coating process
Nano Research (2023)