Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions


Vertical cavity surface-emitting lasers (VCSELs) have made indispensable contributions to the development of modern optoelectronic technologies. However, arbitrary beam shaping of VCSELs within a compact system has remained inaccessible until now. The emerging ultra-thin flat optical structures, namely metasurfaces, offer a powerful technique to manipulate electromagnetic fields with subwavelength spatial resolution. Here, we show that the monolithic integration of dielectric metasurfaces with VCSELs enables remarkable arbitrary control of the laser beam profiles, including self-collimation, Bessel and Vortex lasers, with high efficiency. Such wafer-level integration of metasurface through VCSEL-compatible technology simplifies the assembling process and preserves the high performance of the VCSELs. We envision that our approach can be implemented in various wide-field applications, such as optical fibre communications, laser printing, smartphones, optical sensing, face recognition, directional displays and ultra-compact light detection and ranging (LiDAR).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design and fabrication principles.
Fig. 2: Performance of collimated lasers.
Fig. 3: Generation of a zero-order Bessel laser.
Fig. 4: Programmable lasers array for wide-range dynamic beam steering.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.


  1. Koyama, F., Kinoshita, S. & Iga, K. Room temperature CW operation of GaAs vertical cavity surface emitting laser. Trans. IEICE E71, 1089–1090 (1988).

    CAS  Google Scholar 

  2. Iga, K. Surface emitting laser—its birth and generation of new optoelectronics field. IEEE J. Sel. Top. Quant. Electron. 6, 1201 (2000).

    Article  CAS  Google Scholar 

  3. Larson, A. Advances in VCSELs for communication and sensing. IEEE J. Sel. Top. Quant. Electron. 17, 1552–1567 (2011).

    Article  Google Scholar 

  4. Moser, P., Lott, J. A. & Bimberg, D. Energy efficiency of directly modulated oxide-confined high bit rate 850-nm VCSELs for optical interconnects. IEEE J. Sel. Top. Quant. Electron. 19, 1702212 (2013).

    Article  Google Scholar 

  5. Pruijmboom, A. et al. Vertical-cavity surface emitting laser-diodes arrays expanding the range of high-power laser systems and applications. J. Laser Appl. 28, 032005 (2016).

    Article  Google Scholar 

  6. Ebeling, K. J., Michalzik, R. & Moench, H. R. Vertical-cavity surface-emitting laser technology applications with focus on sensors and three-dimensional imaging. Jpn J. Appl. Phys. 57, 08PA02 (2018).

    Article  Google Scholar 

  7. Danner, A. J., Raftery, J. J., Leisher, P. O. & Choquette, K. D. Single mode photonic crystal vertical cavity lasers. Appl. Phys. Lett. 88, 1114–1116 (2006).

    Article  Google Scholar 

  8. Zhou, D. & Mawst, L. J. High power single mode antiresonant reflecting optical waveguide type vertical cavity surface emitting lasers. IEEE J. Quant. Electron. 38, 1599–1606 (2002).

    Article  CAS  Google Scholar 

  9. Hirose, K. et al. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photon. 8, 406–411 (2014).

    Article  CAS  Google Scholar 

  10. Huang, M. C. Y., Zhou, Y. & Chang-Hasnain, C. J. A surface-emitting laser incorporating a high index contrast subwavelength grating. Nat. Photon. 1, 119–122 (2007).

    Article  CAS  Google Scholar 

  11. Qiao, P. F., Yang, W. J. & Chang-Hasnain, C. J. Recent advances in high-contrast metastructures, metasurfaces, and photonic crystals. Adv. Opt. Photonics 10, 180–245 (2018).

    Article  Google Scholar 

  12. Jung, C. et al. 4.8 mW single mode oxide confined topsurface emitting vertical-cavity laser diodes. Electron. Lett. 33, 1790–1791 (1997).

    Article  CAS  Google Scholar 

  13. Martinsson, H. et al. Transverse mode selection in large-area oxide-confined vertical-cavity surface-emitting lasers using a shallow surface relief. IEEE Photon. Technol. Lett. 11, 1536–1538 (1999).

    Article  Google Scholar 

  14. Zhou, D. & Mawst, L. J. High-power single-mode antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting lasers. IEEE J. Quant. Electron. 38, 1599–1606 (2002).

    Article  CAS  Google Scholar 

  15. Martinsson, H., Bengtsson, J., Ghisoni, M. & Larsson, A. Monolithic integration of vertical-cavity surface-emitting laser and diffractive optical element for advanced beam shaping. IEEE Photon. Technol. Lett. 11, 503–505 (1999).

    Article  Google Scholar 

  16. Bardinal, V. et al. Collective micro-optics technologies for VCSEL photonic integration. Adv. Opt. Tech. 2011, 1–11 (2011).

    Article  Google Scholar 

  17. Rastani, K., Orenstein, M., Kapon, E. & Von Lehmen, A. C. Integration of planar Fresnel microlenses with vertical-cavity surface-emitting laser arrays. Opt. Lett. 16, 919–921 (1991).

    Article  CAS  Google Scholar 

  18. Karlsson, M. et al. Monolithic integration of continuous-relief diffractive structures with vertical-cavity surface-emitting lasers. IEEE Photon. Technol. Lett. 15, 359–361 (2003).

    Article  Google Scholar 

  19. Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    Article  CAS  Google Scholar 

  20. Lalanne, P., Astilean, S., Chavel, P., Cambril, E. & Launois, H. Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff. J. Opt. Soc. Am. A 16, 1143 (1999).

    Article  Google Scholar 

  21. Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, 2472 (2016).

    Article  Google Scholar 

  22. Wang, S. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227–232 (2018).

    Article  CAS  Google Scholar 

  23. Burgos, S. P., Waele, R., Polman, A. & Atwater, H. A. A single-layer wide-angle negative-index metamaterial at visible frequencies. Nat. Mater. 9, 407–412 (2010).

    Article  CAS  Google Scholar 

  24. Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).

    Article  CAS  Google Scholar 

  25. Genevet, P., Capasso, F., Aieta, F., Khorasaninejad, M. & Devlin, R. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica 4, 139–152 (2017).

    Article  CAS  Google Scholar 

  26. Arbabi, A., Arbabi, E., Horie, Y., Kamali, S. M. & Faraon, A. Planar metasurface retroreflector. Nat. Photon. 11, 415–420 (2017).

    Article  CAS  Google Scholar 

  27. Hu, G. et al. Coherent steering of nonlinear chiral valley photons with a synthetic Au-WS2 metasurface. Nat. Photon. 13, 467–472 (2019).

    Article  CAS  Google Scholar 

  28. Xu, L. et al. Metasurface external cavity laser. Appl. Phys. Lett. 107, 221105 (2015).

    Article  Google Scholar 

  29. Xu, L. et al. Terahertz metasurface quantum-cascade VECSELs: theory and performance. IEEE J. Sel. Top. Quantum Electron. 23, 1200512 (2017).

    Google Scholar 

  30. Hashizume, J. & Koyama, F. Plasmon-enhancement of optical near-field of metal nanoaperture surface-emitting laser. Appl. Phys. Lett. 84, 3226–3228 (2004).

    Article  CAS  Google Scholar 

  31. Rao, Z., Hesselink, L. & Harris, J. S. High transmission through ridge nano-apertures on vertical-cavity surface-emitting lasers. Opt. Express 15, 10427–10438 (2007).

    Article  Google Scholar 

  32. Li, K., Rao, Y., Chase, C., Yang, W. J. & Chang-Hasnain, C. J. Monolithic high-contrast metastructure for beam-shaping VCSELs. Optica 5, 10–13 (2018).

    Article  CAS  Google Scholar 

  33. Seghilani, M. S. et al. Vortex laser based on III-V semiconductor metasurface: direct generation of coherent Laguerre–Gauss modes carrying controlled orbital angular momentum. Sci. Rep. 6, 38156 (2016).

    Article  CAS  Google Scholar 

  34. Arbabi, A., Briggs, R. M., Horie, Y., Bagheri, M. & Faraon, A. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers. Opt. Express 23, 33310–33317 (2015).

    Article  CAS  Google Scholar 

  35. Arbabi, A., Horie, Y., Ball, A. J., Bagheri, M. & Faraon, A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 6, 7069 (2015).

    Article  CAS  Google Scholar 

  36. Lalanne, P. & Chavel, P. Metalenses at visible wavelengths: past, present, perspectives. Laser Photonics Rev. 11, 1600295 (2017).

    Article  Google Scholar 

Download references


We acknowledge financial support from the National Key R&D Programme of China (grant no. 2018YFA0209000), the National Natural Science Foundation of China (grant nos. 61604007 and 61874145) and the Beijing Natural Science Foundation (grant nos. 4172009 and 4182012). P.-N.N., G.B. and P.G. acknowledge financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement FLATLIGHT no. 639109 and grant agreement i-LiDAR no. 874986). We acknowledge the Nanofabrication Laboratory at National Centre for Nanoscience and Technology for sample fabrication. We thank Y.B. Gao, Y.H. Zhang and Z.H. Zhang for fruitful discussions.

Author information

Authors and Affiliations



Y.-Y.X., P.-N.N. and P.G. conceived the idea and coordinated the experiment. H.-D.C., C.X. and P.G. supervised the project. Y.-Y.X., Q.-H.W., Q.K. and P.-P.C. carried out the fabrication, built the optical setup and performed the measurement. P.-N.N., G.B., A.D., H.-R.R. and P.G. conducted numerical simulations and supported the experiment with theoretical analysis. Y.-Y.X., P.-N.N., Q.K., Z.-Z.Z., H.-D.C., C.X. and P.G. performed data analysis. Y.-Y.X., P.-N.N. and P.G. wrote the manuscript draft. All authors participated in improving the final version of the manuscript.

Corresponding authors

Correspondence to Qiang Kan, Chen Xu or Patrice Genevet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Holger Moench and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–7, Figs. 1–21 and refs. 1–3.

Supplementary Video 1

Comparison of the collimation performance for both a bare VCSEL and a MS-VCSEL as a function of the propagation distance. This video confirms the collimation properties of metasurface for multi-mode laser emissions.

Supplementary Video 2

The beam profile of the MS-VCSEL recorded along the propagation direction demonstrates the build-up evolution of a laser vortex with OAM l = 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, YY., Ni, PN., Wang, QH. et al. Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions. Nat. Nanotechnol. 15, 125–130 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing