Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanoscale radiative thermal switching via multi-body effects


Control of thermal transport at the nanoscale is of great current interest for creating novel thermal logic and energy conversion devices. Recent experimental studies have demonstrated that radiative heat transfer between macroscopic objects separated by nanogaps, or between nanostructures located in the far-field of each other, can exceed the blackbody limit. Here, we show that the radiative heat transfer between two coplanar SiN membranes can be modulated by factors as large as five by bringing a third planar object into close proximity of the membranes. Numerical modelling reveals that this modulation is due to a modification of guided modes (supported in the SiN nanomembranes) by evanescent interactions with the third object. This multi-body effect could offer an efficient pathway for active control of heat currents at the nanoscale.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Experimental platform to demonstrate active control of radiative heat currents.
Fig. 2: Measurement procedure and comparison of experimental results with computational predictions.
Fig. 3: Analysis of the physical mechanism responsible for switching of radiative heat currents.
Fig. 4: Demonstration of switching with gold-coated modulator.

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Code availability

An open source code SCUFF-EM ( was used to compute the Poynting flux resulting from thermal sources. COMSOL Multiphysics was used for calculating the field profile of guided modes and for modelling the temperature increase on receiver.


  1. 1.

    Cho, J. et al. Electrochemically tunable thermal conductivity of lithium cobalt oxide. Nat. Commun. 5, 4035 (2014).

    CAS  Article  Google Scholar 

  2. 2.

    Tomko, J. A. et al. Tunable thermal transport and reversible thermal conductivity switching in topologically networked bio-inspired materials. Nat. Nanotechnol. 13, 959–964 (2018).

    CAS  Article  Google Scholar 

  3. 3.

    Wehmeyer, G., Yabuki, T., Monachon, C., Wu, J. Q. & Dames, C. Thermal diodes, regulators, and switches: physical mechanisms and potential applications. Appl. Phys. Rev. 4, 041304 (2017).

    Article  Google Scholar 

  4. 4.

    Ben-Abdallah, P. & Biehs, S.-A. Near-field thermal transistor. Phys. Rev. Lett. 112, 044301 (2014).

    Article  Google Scholar 

  5. 5.

    Ben-Abdallah, P., Biehs, S.-A. & Joulain, K. Many-body radiative heat transfer theory. Phys. Rev. Lett. 107, 114301 (2011).

    Article  Google Scholar 

  6. 6.

    Messina, R., Antezza, M. & Ben-Abdallah, P. Three-body amplification of photon heat tunneling. Phys. Rev. Lett. 109, 244302 (2012).

    Article  Google Scholar 

  7. 7.

    Zhu, L. X. & Fan, S. H. Persistent directional current at equilibrium in nonreciprocal many-body near field electromagnetic heat transfer. Phys. Rev. Lett. 117, 134303 (2016).

    Article  Google Scholar 

  8. 8.

    Nikbakht, M. Radiative heat transfer in anisotropic many-body systems: tuning and enhancement. J. Appl. Phys. 116, 094307 (2014).

    Article  Google Scholar 

  9. 9.

    Ottens, R. S. et al. Near-field radiative heat transfer between macroscopic planar surfaces. Phys. Rev. Lett. 107, 014301 (2011).

    CAS  Article  Google Scholar 

  10. 10.

    Song, B. et al. Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps. Nat. Nanotechnol. 11, 509–514 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    St-Gelais, R., Zhu, L. X., Fan, S. H. & Lipson, M. Near-field radiative heat transfer between parallel structures in the deep subwavelength regime. Nat. Nanotechnol. 11, 515–519 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Thompson, D. et al. Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit. Nature 561, 216–221 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    Ito, K., Nishikawa, K., Miura, A., Toshiyoshi, H. & Iizuka, H. Dynamic modulation of radiative heat transfer beyond the blackbody limit. Nano Lett. 17, 4347–4353 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Van Zwol, P., Ranno, L. & Chevrier, J. Tuning near field radiative heat flux through surface excitations with a metal insulator transition. Phys. Rev. Lett. 108, 234301 (2012).

    Article  Google Scholar 

  15. 15.

    Shen, S., Narayanaswamy, A. & Chen, G. Surface phonon polaritons mediated energy transfer between nanoscale gaps. Nano Lett. 9, 2909–2913 (2009).

    CAS  Article  Google Scholar 

  16. 16.

    Fiorino, A. et al. A thermal diode based on nanoscale thermal radiation. ACS Nano 12, 5774–5779 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    Fiorino, A. et al. Giant enhancement in radiative heat transfer in sub-30 nm gaps of plane parallel surfaces. Nano Lett. 18, 3711–3715 (2018).

    CAS  Article  Google Scholar 

  18. 18.

    Watjen, J. I., Zhao, B. & Zhang, Z. M. M. Near-field radiative heat transfer between doped-Si parallel plates separated by a spacing down to 200 nm. Appl. Phys. Lett. 109, 203112 (2016).

    Article  Google Scholar 

  19. 19.

    Polder, D. & Van Hove, M. Theory of radiative heat transfer between closely spaced bodies. Phys. Rev. B 4, 3303–3314 (1971).

    Article  Google Scholar 

  20. 20.

    Pendry, J. B. Radiative exchange of heat between nanostructures. J. Phys. Condens. Matter 11, 6621–6633 (1999).

    CAS  Article  Google Scholar 

  21. 21.

    Joulain, K., Mulet, J.-P., Marquier, F., Carminati, R. & Greffet, J.-J. Surface electromagnetic waves thermally excited: radiative heat transfer, coherence properties and casimir forces revisited in the near field. Surf. Sci. Rep. 57, 59–112 (2005).

    CAS  Article  Google Scholar 

  22. 22.

    Huang, Y., Boriskina, S. V. & Chen, G. Electrically tunable near-field radiative heat transfer via ferroelectric materials. Appl. Phys. Lett. 105, 244102 (2014).

    Article  Google Scholar 

  23. 23.

    Moncada-Villa, E., Fernández-Hurtado, V., Garcia-Vidal, F. J., García-Martín, A. & Cuevas, J. C. Magnetic field control of near-field radiative heat transfer and the realization of highly tunable hyperbolic thermal emitters. Phys. Rev. B 92, 125418 (2015).

    Article  Google Scholar 

  24. 24.

    Modest, M. F. Radiative Heat Transfer 3rd edn (Academic Press, 2013).

  25. 25.

    Fiorino, A. et al. Nanogap near-field thermophotovoltaics. Nat. Nanotechnol. 13, 806–811 (2018).

    CAS  Article  Google Scholar 

  26. 26.

    Zhu, L. X. et al. Near-field photonic cooling through control of the chemical potential of photons. Nature 566, 239–244 (2019).

    CAS  Article  Google Scholar 

  27. 27.

    Inoue, T. et al. One-chip near-field thermophotovoltaic device integrating a thin-film thermal emitter and photovoltaic cell. Nano Lett. 19, 3948–3952 (2019).

    CAS  Article  Google Scholar 

  28. 28.

    Fernandez-Hurtado, V., Fernandez-Dominguez, A. I., Feist, J., Garcia-Vidal, F. J. & Cuevas, J. C. Super-Planckian far-field radiative heat transfer. Phys. Rev. B 97, 045408 (2018).

    CAS  Article  Google Scholar 

  29. 29.

    Shin, S. M., Elzouka, M., Prasher, R. & Chen, R. K. Far-field coherent thermal emission from polaritonic resonance in individual anisotropic nanoribbons. Nat. Commun. 10, 1377 (2019).

    Article  Google Scholar 

  30. 30.

    Ganjeh, Y. et al. A platform to parallelize planar surfaces and control their spatial separation with nanometer resolution. Rev. Sci. Instrum. 83, 105101 (2012).

    CAS  Article  Google Scholar 

  31. 31.

    Rytov, S. M., Kravtsov, I. A. & Tatarskii, V. I. Principles of Statistical Radiophysics 2nd edn (Springer-Verlag, 1987).

  32. 32.

    Reid, M. H. & Johnson, S. G. Efficient computation of power, force, and torque in BEM scattering calculations. IEEE Trans. Antennas Propag. 63, 3588–3598 (2015).

    Article  Google Scholar 

  33. 33.

    Rodriguez, A. W., Reid, M. T. H. & Johnson, S. G. Fluctuating-surface-current formulation of radiative heat transfer for arbitrary geometries. Phys. Rev. B 86, 220302(R) (2012).

    Article  Google Scholar 

  34. 34.

    Haus, H. A. Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

  35. 35.

    Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E. & Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014).

    CAS  Article  Google Scholar 

  36. 36.

    Basu, S., Zhang, Z. & Fu, C. Review of near-field thermal radiation and its application to energy conversion. Int. J. Energy Res. 33, 1203–1232 (2009).

    CAS  Article  Google Scholar 

  37. 37.

    Fang, J., Frederich, H. & Pilon, L. Harvesting nanoscale thermal radiation using pyroelectric materials. J. Heat. Transf. 132, 092701 (2010).

    Article  Google Scholar 

  38. 38.

    Pandya, S. et al. Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films. Nat. Mater. 17, 432–438 (2018).

    CAS  Article  Google Scholar 

  39. 39.

    Sadat, S., Meyhofer, E. & Reddy, P. High resolution resistive thermometry for micro/nanoscale measurements. Rev. Sci. Instrum. 83, 084902 (2012).

    CAS  Article  Google Scholar 

  40. 40.

    Sadat, S., Meyhofer, E. & Reddy, P. Resistance thermometry-based picowatt-resolution heat-flow calorimeter. Appl. Phys. Lett. 102, 163110 (2013).

    Article  Google Scholar 

  41. 41.

    Otey, C. R., Zhu, L., Sandhu, S. & Fan, S. Fluctuational electrodynamics calculations of near-field heat transfer in non-planar geometries: a brief overview. J. Quant. Spectrosc. Radiat. Transf. 132, 3–11 (2014).

    CAS  Article  Google Scholar 

  42. 42.

    Cataldo, G. et al. Infrared dielectric properties of low-stress silicon nitride. Opt. Lett. 37, 4200–4202 (2012).

    CAS  Article  Google Scholar 

Download references


P.R. and E.M. acknowledge support from the Army Research Office (grant no. W911NF-19-1-0279 (nanopositioning and modelling)) and the DOE-BES (award no. DE-SC0004871 (calorimetry and analysis)). We thank P. Ben-Abdallah for useful discussions and comments on this work. We acknowledge the Lurie Nanofabrication Facility for facilitating the fabrication of devices.

Author information




D.T., E.M. and P.R. conceived the work. D.T. fabricated the devices and performed the experiments. L.Z. performed the calculations. The manuscript was written by D.T., L.Z., E.M. and P.R.

Corresponding authors

Correspondence to Edgar Meyhofer or Pramod Reddy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Patrick Hopkins and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, discussion and ref. 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thompson, D., Zhu, L., Meyhofer, E. et al. Nanoscale radiative thermal switching via multi-body effects. Nat. Nanotechnol. 15, 99–104 (2020).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research