Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Artificial water channels enable fast and selective water permeation through water-wire networks

An Author Correction to this article was published on 24 January 2020

This article has been updated


Artificial water channels are synthetic molecules that aim to mimic the structural and functional features of biological water channels (aquaporins). Here we report on a cluster-forming organic nanoarchitecture, peptide-appended hybrid[4]arene (PAH[4]), as a new class of artificial water channels. Fluorescence experiments and simulations demonstrated that PAH[4]s can form, through lateral diffusion, clusters in lipid membranes that provide synergistic membrane-spanning paths for a rapid and selective water permeation through water-wire networks. Quantitative transport studies revealed that PAH[4]s can transport >109 water molecules per second per molecule, which is comparable to aquaporin water channels. The performance of these channels exceeds the upper bound limit of current desalination membranes by a factor of ~104, as illustrated by the water/NaCl permeability–selectivity trade-off curve. PAH[4]’s unique properties of a high water/solute permselectivity via cooperative water-wire formation could usher in an alternative design paradigm for permeable membrane materials in separations, energy production and barrier applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Cluster-forming PAH[4] channels.
Fig. 2: Measurements of water and ion conduction rates through PAH[4]s.
Fig. 3: Intrinsic water/NaCl selectivity (Pw/Ps) versus Pw of PAH[4]-, CNTP- and RsAqpZ-based biomimetic membranes.
Fig. 4: MD simulations of a 22-mer cluster of PAH[4] channels and of an AQP1 tetramer embedded in a lipid bilayer membrane.

Data availability

The datasets that support the finding of this study are available in ScholarSphere repository with the identifier(s) (

Change history

  • 24 January 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.


  1. 1.

    Preston, G. M., Carroll, T. P., Guggino, W. B. & Agre, P. Appearance of water channels in xenopus oocytes expressing red cell CHIP28 protein. Science 256, 385–387 (1992).

    CAS  Google Scholar 

  2. 2.

    Noda, Y., Sohara, E., Ohta, E. & Sasaki, S. Aquaporins in kidney pathophysiology. Nat. Rev. Nephrol. 6, 168 (2010).

    CAS  Google Scholar 

  3. 3.

    Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).

    Google Scholar 

  4. 4.

    Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016).

    CAS  Google Scholar 

  5. 5.

    Shen, Y.-x., Saboe, P. O., Sines, I. T., Erbakan, M. & Kumar, M. Biomimetic membranes: a review. J. Membr. Sci. 454, 359–381 (2014).

    CAS  Google Scholar 

  6. 6.

    Hélix-Nielsen, C. Biomimetic membranes as a technology platform: challenges and opportunities. Membranes 8, 44 (2018).

    Google Scholar 

  7. 7.

    Song, W., Lang, C., Shen, Y.-.x. & Kumar, M. Design considerations for artificial water channel-based membranes. Ann. Rev. Mater. Res. 48, 57–82 (2018).

    CAS  Google Scholar 

  8. 8.

    Song, W., Tu, Y.-M., Oh, H., Samineni, L. & Kumar, M. Hierarchical optimization of high-performance biomimetic and bioinspired membranes. Langmuir 35, 589–607 (2019).

    CAS  Google Scholar 

  9. 9.

    Horner, A. et al. The mobility of single-file water molecules is governed by the number of H-bonds they may form with channel-lining residues. Sci. Adv. 1, e1400083 (2015).

    Google Scholar 

  10. 10.

    Shen, Y.-x. et al. Achieving high permeability and enhanced selectivity for angstrom-scale separations using artificial water channel membranes. Nat. Commun. 9, 2294 (2018).

    Google Scholar 

  11. 11.

    Licsandru, E. et al. Salt-Excluding artificial water channels exhibiting enhanced dipolar water and proton translocation. J. Am. Chem. Soc. 138, 5403–5409 (2016).

    CAS  Google Scholar 

  12. 12.

    Chen, L. et al. Chiral selective transmembrane transport of amino acids through artificial channels. J. Am. Chem. Soc. 135, 2152–2155 (2013).

    CAS  Google Scholar 

  13. 13.

    Shen, Y.-x. et al. Highly permeable artificial water channels that can self-assemble into two-dimensional arrays. Proc. Natl Acad. Sci. USA 112, 9810–9815 (2015).

    CAS  Google Scholar 

  14. 14.

    Tunuguntla, R. H. et al. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 357, 792–796 (2017).

    CAS  Google Scholar 

  15. 15.

    Freger, V. Selectivity and polarization in water channel membranes: lessons learned from polymeric membranes and CNTs. Faraday Discuss. 209, 371–388 (2018).

    CAS  Google Scholar 

  16. 16.

    Song, W. & Kumar, M. Artificial water channels: toward and beyond desalination. Curr. Opin. Chem. Eng. 25, 9–17 (2019).

    Google Scholar 

  17. 17.

    Sui, H., Han, B.-G., Lee, J. K., Walian, P. & Jap, B. K. Structural basis of water-specific transport through the AQP1 water channel. Nature 414, 872–878 (2001).

    CAS  Google Scholar 

  18. 18.

    Tajkhorshid, E. et al. Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 296, 525–530 (2002).

    CAS  Google Scholar 

  19. 19.

    Saparov, S. M. et al. Mobility of a one-dimensional confined file of water molecules as a function of file length. Phys. Rev. Lett. 96, 148101 (2006).

    Google Scholar 

  20. 20.

    Hannesschläger, C., Barta, T., Siligan, C. & Horner, A. Quantification of water flux in vesicular systems. Sci. Rep. 8, 8516 (2018).

    Google Scholar 

  21. 21.

    Borgnia, M. J., Kozono, D., Calamita, G., Maloney, P. C. & Agre, P. Functional reconstitution and characterization of AqpZ, the E. coli water channel protein11 edited by W. Baumeister. J. Mol. Biol. 291, 1169–1179 (1999).

    CAS  Google Scholar 

  22. 22.

    Pohl, P., Saparov, S. M., Borgnia, M. J. & Agre, P. Highly selective water channel activity measured by voltage clamp: analysis of planar lipid bilayers reconstituted with purified AqpZ. Proc. Natl Acad. Sci. USA 98, 9624–9629 (2001).

    CAS  Google Scholar 

  23. 23.

    Horner, A. & Pohl, P. Comment on “Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins”. Science 359, eaap9173 (2018).

    Google Scholar 

  24. 24.

    Baaden, M. et al. Biomimetic water channels: general discussion. Faraday Discuss. 209, 205–229 (2018).

    CAS  Google Scholar 

  25. 25.

    Geise, G. M., Park, H. B., Sagle, A. C., Freeman, B. D. & McGrath, J. E. Water permeability and water/salt selectivity tradeoff in polymers for desalination. J. Membr. Sci. 369, 130–138 (2011).

    CAS  Google Scholar 

  26. 26.

    Toyoshima, Y. & Thompson, T. E. Chloride flux in bilayer membranes. Chloride permeability in aqueous dispersions of single-walled, bilayer vesicles. Biochemistry 14, 1525–1531 (1975).

    CAS  Google Scholar 

  27. 27.

    Lang, C. et al. Biomimetic transmembrane channels with high stability and transporting efficiency from helically folded macromolecules. Angew. Chem. Int. Ed. 55, 9723–9727 (2016).

    CAS  Google Scholar 

  28. 28.

    Taylor, G. J., Venkatesan, G. A., Collier, C. P. & Sarles, S. A. Direct in situ measurement of specific capacitance, monolayer tension, and bilayer tension in a droplet interface bilayer. Soft Matter 11, 7592–7605 (2015).

    CAS  Google Scholar 

  29. 29.

    Najem, J. S. et al. Memristive ion channel-doped biomembranes as synaptic mimics. ACS Nano 12, 4702–4711 (2018).

    CAS  Google Scholar 

  30. 30.

    Venkatesan, G. A. et al. Adsorption kinetics dictate monolayer self-assembly for both lipid-in and lipid-out approaches to droplet interface bilayer formation. Langmuir 31, 12883–12893 (2015).

    CAS  Google Scholar 

  31. 31.

    Taylor, G. J. & Sarles, S. A. Heating-enabled formation of droplet interface bilayers using Escherichia coli total lipid extract. Langmuir 31, 325–337 (2015).

    CAS  Google Scholar 

  32. 32.

    Najem, J. S. et al. Dynamical nonlinear memory capacitance in biomimetic membranes. Nat. Commun. 10, 3239 (2019).

    Google Scholar 

  33. 33.

    Werber, J. R. & Elimelech, M. Permselectivity limits of biomimetic desalination membranes. Sci. Adv. 4, eaar8266 (2018).

    Google Scholar 

  34. 34.

    Erbakan, M. et al. Molecular cloning, overexpression and characterization of a novel water channel protein from Rhodobacter sphaeroides. PLoS ONE 9, e86830 (2014).

    Google Scholar 

  35. 35.

    Chowdhury, R. et al. PoreDesigner for tuning solute selectivity in a robust and highly permeable outer membrane pore. Nat. Commun. 9, 3661 (2018).

    Google Scholar 

  36. 36.

    Chowdhury, R., Allan, M. F. & Maranas, C. D. OptMAVEn-2.0: De novo design of variable antibody regions against targeted antigen epitopes. Antibodies 7, 23.

  37. 37.

    Horner, A. & Pohl, P. Single-file transport of water through membrane channels. Faraday Discuss. 209, 9–33 (2018).

    CAS  Google Scholar 

  38. 38.

    Woodle, M. C. & Papahadjopoulos, D. [9] Liposome preparation and size characterization. Methods Enzymol. 171, 193–217 (1989).

    CAS  Google Scholar 

  39. 39.

    Latimer, P. & Pyle, B. E. Light scattering at various angles: theoretical predictions of the effects of particle volume changes. Biophys. J. 12, 764–773 (1972).

    CAS  Google Scholar 

  40. 40.

    Tong, J., Canty, J. T., Briggs, M. M. & McIntosh, T. J. The water permeability of lens aquaporin-0 depends on its lipid bilayer environment. Exp. Eye Res. 113, 32–40 (2013).

    CAS  Google Scholar 

  41. 41.

    Biwersi, J., Tulk, B. & Verkman, A. S. Long-Wavelength chloride-sensitive fluorescent indicators. Anal. Biochem. 219, 139–143 (1994).

    CAS  Google Scholar 

  42. 42.

    Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

    CAS  Google Scholar 

  43. 43.

    Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM‐GUI: a web‐based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).

    CAS  Google Scholar 

  44. 44.

    Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential function for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    CAS  Google Scholar 

  45. 45.

    Decker, K. et al. Selective permeability of truncated aquaporin 1 in silico. ACS Biomater. Sci. Eng. 3, 342–348 (2017).

    CAS  Google Scholar 

  46. 46.

    Feller, S. E., Zhang, Y., Pastor, R. W. & Brooks, B. R. Constant pressure molecular dynamics simulation: the Langevin piston method. J. Chem. Phys. 103, 4613–4621 (1995).

    CAS  Google Scholar 

  47. 47.

    Martyna, G. J., Tobias, D. J. & Klein, M. L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 101, 4177–4189 (1994).

    CAS  Google Scholar 

  48. 48.

    Sindhikara, D. J., Kim, S., Voter, A. F. & Roitberg, A. E. Bad seeds sprout perilous dynamics: stochastic thermostat induced trajectory synchronization in biomolecules. J. Chem. Theory Comput. 5, 1624–1631 (2009).

    CAS  Google Scholar 

  49. 49.

    Best, R. B. et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles. J. Chem. Theory Comput. 8, 3257–3273 (2012).

    CAS  Google Scholar 

  50. 50.

    Klauda, J. B. et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830–7843 (2010).

    CAS  Google Scholar 

  51. 51.

    Yoo, J. & Aksimentiev, A. New tricks for old dogs: improving the accuracy of biomolecular force fields by pair-specific corrections to non-bonded interactions. Phys. Chem. Chem. Phys. 20, 8432–8449 (2018).

    CAS  Google Scholar 

  52. 52.

    Yoo, J. & Aksimentiev, A. Improved parametrization of Li+ Na+, K+, and Mg2+ ions for all-atom molecular dynamics simulations of nucleic acid systems. J Phys Chem Lett 3, 45–50 (2011).

    Google Scholar 

  53. 53.

    Miyamoto, S. & Kollman, P. A. SETTLE: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 13, 952–962 (1992).

    CAS  Google Scholar 

  54. 54.

    Andersen, H. C. RATTLE: a ‘velocity’ version of the SHAKE algorithm for molecular dynamics calculations. J. Comput. Phys. 52, 24–34 (1983).

    CAS  Google Scholar 

  55. 55.

    Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. Model 14, 33–38 (1996).

    CAS  Google Scholar 

Download references


The authors acknowledge financial support from the National Science Foundation (NSF) CAREER grant (CBET-1552571) to M.K. for this work. A.A. and H.J. acknowledge support from the National Science Foundation under grant DMR-1827346 and the National Institutes of Health under grant P41-GM104601. Additional support was provided by NSF grant CBET-1804836 to M.K. Supercomputer time was provided through XSEDE Allocation Grant no. MCA05S028 and the Blue Waters petascale supercomputer system at the University of Illinois at Urbana−Champaign. H.J. acknowledges the Government of India for the DST-Overseas Visiting Fellowship in Nano Science and Technology.

Author information




W.S., H.J., A.A. and M.K. conceived and designed the research. W.S. and Y.-x.S. performed the experiments with the assistance of J.S.N., C.L., C.B.H., Y.-M.T., M.F., M.E.P. and J.-l.H. in specialized analytical tools. H.J. and R.C. performed the computer simulations. W.S., H.J., R.C., C.D.M., P.S.C., R.J.H., S.A.S., J.-l.H., A.A. and M.K. analysed the data. W.S., H.J., R.C., A.A. and M.K. co-wrote the paper.

Corresponding author

Correspondence to Manish Kumar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Andreas Horner, Meni Wanunu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods and discussions, Figs. 1–30 and Video captions 1–5.

Supplementary Video 1

Molecular Model of PAH[4] channels. The central constriction of the hybrid[4]arene macromolecules and the nearest phenylalanine moieties are coloured in green. The remaining phenylalanine moieties are coloured in purple.

Supplementary Video 2

Top and cross-sectional views of a MD system featuring a 22-mer cluster (green and purple) of PAH[4] channels embedded in a POPC lipid bilayer membrane (turquoise). For visual clarity, water and ions are not shown.

Supplementary Video 3

A 100 ns long MD simulation trajectory of 22-mer PAH[4] cluster with the ±1 V externally applied bias across the simulation box. In these applied electric field MD simulations, the cluster was harmonically restrained to its equilibrium configuration obtained at the end of a 400 ns-long MD simulation. Lipid bilayer membrane is shown in turquoise, whereas the PAH[4] units are shown in purple and green. Na+ and Cl ions are shown in yellow and blue colour with vdW representation. Water is not shown for clarity.

Supplementary Video 4

MD system featuring a 22-mer cluster (green and purple) of PAH[4] channels embedded in a POPC lipid bilayer membrane (turquoise), showing cooperative water wire network formation spanning the membrane. Water, Na+, and Cl atoms are shown in red and white, magenta, and yellow, respectively.

Supplementary Video 5

Cut-away view of a simulation system illustrating the cooperative water permeation through a water wire network. The 22-mer PAH[4] cluster, POPC lipid membrane, and water molecules are shown in green and purple, turquoise, and red and white, respectively.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, W., Joshi, H., Chowdhury, R. et al. Artificial water channels enable fast and selective water permeation through water-wire networks. Nat. Nanotechnol. 15, 73–79 (2020).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research