A high-performance topological bulk laser based on band-inversion-induced reflection

Abstract

Topological insulators are materials that behave as insulators in the bulk and as conductors at the edge or surface due to the particular configuration of their bulk band dispersion. However, up to date possible practical applications of this band topology on materials’ bulk properties have remained abstract. Here, we propose and experimentally demonstrate a topological bulk laser. We pattern semiconductor nanodisk arrays to form a photonic crystal cavity showing topological band inversion between its interior and cladding area. In-plane light waves are reflected at topological edges forming an effective cavity feedback for lasing. This band-inversion-induced reflection mechanism induces single-mode lasing with directional vertical emission. Our topological bulk laser works at room temperature and reaches the practical requirements in terms of cavity size, threshold, linewidth, side-mode suppression ratio and directionality for most practical applications according to Institute of Electrical and Electronics Engineers and other industry standards. We believe this bulk topological effect will have applications in near-field spectroscopy, solid-state lighting, free-space optical sensing and communication.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Principle of the construction of the topological bulk laser.
Fig. 2: Topological bulk laser cavity.
Fig. 3: Lasing characteristics of topological bulk laser.
Fig. 4: Directional emission of the topological bulk laser.

Data availability

The data that support the plots in this paper and other findings of this study are available from the corresponding author on reasonable request.

References

  1. 1.

    Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010).

  2. 2.

    Qi, X. L. & Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011).

  3. 3.

    Weng, H., Yu, R., Hu, X., Dai, X. & Fang, Z. Quantum anomalous Hall effect and topological electronic states. Adv. Phys. 64, 227–282 (2015).

  4. 4.

    Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

  5. 5.

    Raghu, S. & Haldane, F. D. M. Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A 78, 033834 (2008).

  6. 6.

    Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

  7. 7.

    Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

  8. 8.

    Fang, K., Yu, Z. & Fan, S. Microscopic theory of photonic one-way edge mode. Phys. Rev. B 84, 075477 (2011).

  9. 9.

    Khanikaev, A. B. et al. Photonic topological insulators. Nat. Mater. 12, 233–239 (2013).

  10. 10.

    Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines via topological protection. Nat. Phys. 7, 907–912 (2011).

  11. 11.

    Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photonics 7, 1001–1005 (2013).

  12. 12.

    Liang, G. Q. & Chong, Y. D. Optical resonator analog of a two-dimensional topological insulator. Phys. Rev. Lett. 110, 203904 (2013).

  13. 13.

    Ma, T., Khanikaev, A. B., Mousavi, S. H. & Shvets, G. Guiding Electromagnetic waves around sharp corners: topologically protected photonic transport in metawaveguides. Phys. Rev. Lett. 114, 127401 (2015).

  14. 14.

    Wu, L. H. & Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015).

  15. 15.

    Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018).

  16. 16.

    Barik, S., Miyake, H., DeGottardi, W., Waks, E. & Hafezi, M. Two-dimensionally confined topological edge states in photonic crystals. New J. Phys. 18, 113013 (2016).

  17. 17.

    Siroki, G., Huidobro, P. A. & Giannini, V. Topological photonics: from crystals to particles. Phys. Rev. B 96, 041408 (2017).

  18. 18.

    Yang, Y. et al. Visualization of a unidirectional electromagnetic waveguide using topological photonic crystals made of dielectric materials. Phys. Rev. Lett. 120, 217401 (2018).

  19. 19.

    Shalaev, M. I., Walasik, W., Tsukernik, A., Xu, Y. & Litchinitser, N. M. Robust topologically protected transport in photonic crystals at telecommunication wavelengths. Nat. Nanotechnol. 14, 31–34 (2019).

  20. 20.

    Slobozhanyuk, A. et al. Three-dimensional all-dielectric photonic topological insulator. Nat. Photonics 11, 130–136 (2016).

  21. 21.

    Yang, Y. et al. Realization of a three-dimensional photonic topological insulator. Nature 565, 622–626 (2019).

  22. 22.

    Lu, L. et al. Symmetry-protected topological photonic crystal in three dimensions. Nat. Phys. 12, 337–340 (2017).

  23. 23.

    Noh, J. et al. Topological protection of photonic mid-gap defect modes. Nat. Photonics 12, 408–415 (2018).

  24. 24.

    Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photonics 6, 782–786 (2012).

  25. 25.

    Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photonics 8, 821–829 (2014).

  26. 26.

    Khanikaev, A. B. & Shvets, G. Two-dimensional topological photonics. Nat. Photonics 11, 763–773 (2017).

  27. 27.

    Ozawa, T. et al. Colloquium: topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

  28. 28.

    St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice. Nat. Photonics 11, 651–656 (2017).

  29. 29.

    Parto, M. et al. Edge-mode lasing in 1D topological active arrays. Phys. Rev. Lett. 120, 113901 (2018).

  30. 30.

    Zhao, H. et al. Topological hybrid silicon microlasers. Nat. Commun. 9, 981 (2018).

  31. 31.

    Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017).

  32. 32.

    Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).

  33. 33.

    Harari, G. et al. Topological insulator laser: theory. Science 359, eaar4003 (2018).

  34. 34.

    IEEE Std 802.3 (IEEE, 2015).

  35. 35.

    Michalzik, R. (ed.) VCSELs: fundamentals, technology and applications of vertical-cavity surface-emitting lasers. Springe. Ser. Optical Sci. 166, 560 (2013).

  36. 36.

    Bernevig, B. A., Hughes, T. L. & Zhang, S. C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

  37. 37.

    Ma, R. M. & Oulton, R. F. Applications of nanolasers. Nat. Nanotechnol. 14, 12–22 (2019).

  38. 38.

    Zhou, W. et al. Lasing action in strongly coupled plasmonic nanocavity arrays. Nat. Nanotechnol. 8, 506–511 (2013).

  39. 39.

    Van Beijnum, F. et al. Surface plasmon lasing observed in metal hole arrays. Phys. Rev. Lett. 110, 206802 (2013).

  40. 40.

    Wang, S. et al. Unusual scaling laws for plasmonic lasers beyond diffraction limit. Nat. Commun. 8, 1889 (2017).

  41. 41.

    Ha, S. T. et al. Directional lasing in resonant semiconductor nanoantenna arrays. Nat. Nanotechnol. 13, 1042–1047 (2018).

  42. 42.

    Wu, L. H. & Hu, X. Topological properties of electrons in honeycomb lattice with detuned hopping energy. Sci. Rep. 6, 24347 (2016).

  43. 43.

    Gorlach, M. A. et al. Far-field probing of leaky topological states in all dielectric metasurfaces. Nat. Commun. 9, 909 (2018).

  44. 44.

    Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017).

  45. 45.

    Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačić, M. Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016).

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (grant nos. 11774014, 11574012, 91950115, 61521004), Beijing Natural Science Foundation (grant no. Z180011) and the National Key R&D Program of China (grant no. 2018YFA0704401). X.H. is supported by the CREST Program, Japan Science and Technology Agency (grant no. JPMJCR18T4) and Grants-in-Aid for Scientific Research, Japan Society of Promotion of Science (grant no.17H02913).

Author information

R.-M.M. conceived and supervised the project. H.-Z.C. and Z.-K.S. designed the device. Z.-K.S. fabricated the devices. S.W, X.-R.M., Z.-Q.Y., Z.-K.S. and R.-M.M. performed optical characterization. H.-Z.C. and S.-L.W. carried out simulations. H.-Z.C., X.-X.W., X.H. and R.-M.M. carried out theoretical analyses. R.-M.M., Z.-K.S., H.-Z.C. and X.H. wrote the manuscript. All authors fully contributed to the project.

Correspondence to Ren-Min Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Alexander Khanikaev and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Parts 1–9, Figs.1–13 and Table 1.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shao, Z., Chen, H., Wang, S. et al. A high-performance topological bulk laser based on band-inversion-induced reflection. Nat. Nanotechnol. 15, 67–72 (2020). https://doi.org/10.1038/s41565-019-0584-x

Download citation