Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Catalytic site-selective substrate processing within a tubular nanoreactor

Abstract

Chemists have long sought the ability to modify molecules precisely when presented with several sites of similar reactivity. We reasoned that the confinement of substrates within nanostructures might permit site-selective reactions unachievable in bulk solution, even with sophisticated reagents. In particular, the stretching and alignment of polymers within nanotubes might allow site-specific cleavage or modification. To explore this proposition, macromolecular disulfide substrates were elongated within members of a collection of tubular protein nanoreactors, which contained cysteine residues positioned at different locations along the length of each tube. For each nanoreactor, we defined the reactive location by using a set of polymer substrates (site-selectivity) and which of the two sulfur atoms was attacked (regioselectivity), and found that disulfide interchange occurs with atomic precision. Our strategy has potential for the selective processing of a wide variety of biomacromolecules, and the chemistry and substrates might be generalized yet further by using alternative nanotubes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Substrate processing within a protein nanotube.
Fig. 2: Nanoscale alignment of a substrate disulfide with a nanoreactor cysteine sulfur determines reactivity.
Fig. 3: Regioselectivity of single-molecule thiol–disulfide interchange.
Fig. 4: Tandem thiol–disulfide interchanges with double-cysteine nanoreactors.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Davis, H. J. & Phipps, R. J. Harnessing non-covalent interactions to exert control over regioselectivity and site-selectivity in catalytic reactions. Chem. Sci. 8, 864–877 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    Mahatthananchai, J., Dumas, A. M. & Bode, J. W. Catalytic selective synthesis. Angew. Chem. Int. Ed. 51, 10954–10990 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    Rousseau, G. & Breit, B. Removable directing groups in organic synthesis and catalysis. Angew. Chem. Int. Ed. 50, 2450–2494 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    Wang, J., Li, G. & Reetz, M. T. Enzymatic site-selectivity enabled by structure-guided directed evolution. Chem. Commun. 53, 3916–3928 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    Dodani, S. C. et al. Discovery of a regioselectivity switch in nitrating P450s guided by molecular dynamics simulations and Markov models. Nat. Chem. 8, 419–425 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    Su, D. & Jaeger, D. A. High regioselectivity in the Diels–Alder reaction of a surfactant 1,3-diene with a surfactant dienophile resulting from a short tether between their functional groups and head groups. Tetrahedron Lett. 40, 7871–7874 (1999).

    CAS  Article  Google Scholar 

  7. 7.

    Yoshizawa, M., Tamura, M. & Fujita, M. Diels–Alder in aqueous molecular hosts: unusual regioselectivity and efficient catalysis. Science 312, 251–254 (2006).

    CAS  Article  Google Scholar 

  8. 8.

    Nakanishi, Y. et al. Template synthesis of linear-chain nanodiamonds inside carbon nanotubes from bridgehead-halogenated diamantane precursors. Angew. Chem. Int. Ed. 54, 10802–10806 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Miners, S. A., Rance, G. A. & Khlobystov, A. N. Regioselective control of aromatic halogenation reactions in carbon nanotube nanoreactors. Chem. Commun. 49, 5586 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    Bayley, H., Luchian, T., Shin, S.-H. & Steffensen, M. B. in Single Molecules and Nanotechnology Springer Series in Biophysics 12 (eds Rigler, R. & Vogel, H.) 251–277 (Springer, 2008).

  11. 11.

    Alegre-Cebollada, J., Kosuri, P., Rivas-Pardo, J. A. & Fernández, J. M. Direct observation of disulfide isomerization in a single protein. Nat. Chem. 3, 882–887 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    Beedle, A. E. M. et al. Forcing the reversibility of a mechanochemical reaction. Nat. Commun. 9, 3155 (2018).

    Article  Google Scholar 

  13. 13.

    Beedle, A. E. M., Mora, M., Lynham, S., Stirnemann, G. & Garcia-Manyes, S. Tailoring protein nanomechanics with chemical reactivity. Nat. Commun. 8, 15658 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Beedle, A. E. M., Lynham, S. & Garcia-Manyes, S. Protein S-sulfenylation is a fleeting molecular switch that regulates non-enzymatic oxidative folding. Nat. Commun. 7, 1–10 (2016).

    Article  Google Scholar 

  15. 15.

    Garcia-Manyes, S. & Beedle, A. E. M. Steering chemical reactions with force. Nat. Rev. Chem. 1, 0083 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Chivers, C. E. et al. A streptavidin variant with slower biotin dissociation and increased mechanostability. Nat. Methods 7, 391–393 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    Murzin, A. G., Lesk, A. M. & Chothia, C. Principles determining the structure of beta-sheet barrels in proteins. J. Mol. Biol. 236, 1382–1400 (1994).

    CAS  Article  Google Scholar 

  18. 18.

    Song, L. et al. Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 274, 1859–1866 (1996).

    CAS  Article  Google Scholar 

  19. 19.

    Stoddart, D., Heron, A. J., Mikhailova, E., Maglia, G. & Bayley, H. Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc. Natl Acad. Sci. USA 106, 7702–7707 (2009).

    CAS  Article  Google Scholar 

  20. 20.

    Fernandes, P. A. & Ramos, M. J. Theoretical insights into the mechanism for thiol/disulfide exchange. Chem. Eur. J. 10, 257–266 (2004).

    CAS  Article  Google Scholar 

  21. 21.

    Bach, R. D., Dmitrenko, O. & Thorpe, C. Mechanism of thiolate-disulfide interchange reactions in biochemistry. J. Org. Chem. 73, 12–21 (2008).

    CAS  Article  Google Scholar 

  22. 22.

    Howorka, S. & Bayley, H. Probing distance and electrical potential within a protein pore with tethered DNA. Biophys. J. 83, 3202–3210 (2002).

    CAS  Article  Google Scholar 

  23. 23.

    Bosco, A., Camunas-Soler, J. & Ritort, F. Elastic properties and secondary structure formation of single-stranded DNA at monovalent and divalent salt conditions. Nucleic Acids Res. 42, 2064–2074 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    Whitesides, G. M., Lilburn, J. E. & Szajewski, R. P. Rates of thiol–disulfide interchange reactions between mono and dithiols and Ellman’s reagent. J. Org. Chem. 42, 332–338 (1977).

    CAS  Article  Google Scholar 

  25. 25.

    Qin, F., Auerbach, A. & Sachs, F. Estimating single-channel kinetic parameters from idealized patch-clamp data containing missed events. Biophys. J. 70, 264–280 (1996).

    CAS  Article  Google Scholar 

  26. 26.

    Pace, C. N., Grimsley, G. R. & Scholtz, J. M. Protein ionizable groups: pK values and their contribution to protein stability and solubility. J. Biol. Chem. 284, 13285–13289 (2009).

    CAS  Article  Google Scholar 

  27. 27.

    Depuydt, M., Messens, J. & Collet, J.-F. How proteins form disulfide bonds. Antioxid. Redox Signal. 15, 49–66 (2011).

    CAS  Article  Google Scholar 

  28. 28.

    Ukuwela, A. A., Bush, A. I., Wedd, A. G. & Xiao, Z. Glutaredoxins employ parallel monothiol–dithiol mechanisms to catalyze thiol–disulfide exchanges with protein disulfides. Chem. Sci. 9, 1173–1183 (2018).

    CAS  Article  Google Scholar 

  29. 29.

    Luchian, T., Shin, S.-H. & Bayley, H. Single-molecule covalent chemistry with spatially separated reactants. Angew. Chem. Int. Ed. 42, 3766–3771 (2003).

    CAS  Article  Google Scholar 

  30. 30.

    Qing, Y., Ionescu, S. A., Pulcu, G. S. & Bayley, H. Directional control of a processive molecular hopper. Science 361, 908–912 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    Lu, B., Fleming, S., Szalay, T. & Golovchenko, J. Thermal motion of DNA in an MspA pore. Biophys. J. 109, 1439–1445 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    Bayley, H. Nanopore sequencing: from imagination to reality. Clin. Chem. 61, 25–31 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    Huxley, M. T. et al. Protecting-group-free site-selective reactions in a metal–organic framework reaction vessel. J. Am. Chem. Soc. 140, 6416–6425 (2018).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank L. Taemaitree for her help with LC–MS characterization. We also thank M. Booth for useful discussions and M. Howarth for providing a sample of traptavidin for preliminary tests. This research was supported by a European Research Council Advanced Grant (COSIMO). Y.Q. was supported by a China Scholarship Council-University of Oxford Scholarship. S.A.I. was funded by an Amelia Jackson Studentship, Exeter College, Oxford.

Author information

Affiliations

Authors

Contributions

Y.Q. and H.B. conceived the research. Y.Q. performed the experiments. H.T.-A. contributed to the solid-phase peptide synthesis. S.A.I. and M.D.L. contributed to the electrical measurements. Y.Q., S.A.I. and H.B. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Hagan Bayley.

Ethics declarations

Competing interests

Y.Q. and H.B. have filed patents describing the molecular hopper and applications thereof. The hopper is ratcheted by regioselective thiol–disulfide interchange.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes, Table 1 and 2, Figs. 1–9 and refs. 1–10.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qing, Y., Tamagaki-Asahina, H., Ionescu, S.A. et al. Catalytic site-selective substrate processing within a tubular nanoreactor. Nat. Nanotechnol. 14, 1135–1142 (2019). https://doi.org/10.1038/s41565-019-0579-7

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research