Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Positive and negative chemotaxis of enzyme-coated liposome motors

Abstract

The ability of cells or cell components to move in response to chemical signals is critical for the survival of living systems. This motion arises from harnessing free energy from enzymatic catalysis. Artificial model protocells derived from phospholipids and other amphiphiles have been made and their enzymatic-driven motion has been observed. However, control of directionality based on chemical cues (chemotaxis) has been difficult to achieve. Here we show both positive or negative chemotaxis of liposomal protocells. The protocells move autonomously by interacting with concentration gradients of either substrates or products in enzyme catalysis, or Hofmeister salts. We hypothesize that the propulsion mechanism is based on the interplay between enzyme-catalysis-induced positive chemotaxis and solute–phospholipid-based negative chemotaxis. Controlling the extent and direction of chemotaxis holds considerable potential for designing cell mimics and delivery vehicles that can reconfigure their motion in response to environmental conditions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of liposomes in the gradients and the experimental set-up.
Fig. 2: Catalysis-induced positive chemotaxis of catalase-coated liposomes and negative chemotaxis of urease-coated liposomes.
Fig. 3: Reconfiguration of direction of movement in ATPase-bound liposomes.
Fig. 4: Ruling out electrolyte diffusiophoretic transport.
Fig. 5: Ruling out density-driven transport.
Fig. 6: Chemotactic movement of inactive liposomes in glucose.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from A.Sen upon reasonable request.

References

  1. Xu, C., Hu, S. & Chen, X. Artificial cells: from basic science to applications. Biochem. Pharmacol. 19, 516–532 (2016).

    CAS  Google Scholar 

  2. Wang, W., Duan, W., Ahmed, S., Sen, A. & Mallouk, T. E. From one to many: dynamic assembly and collective behavior of self-propelled colloidal motors. Acc. Chem. Res. 48, 1938–1946 (2015).

    Article  CAS  Google Scholar 

  3. Tu, Y. et al. Mimicking the cell: bio-inspired functions of supramolecular assemblies. Chem. Rev. 116, 2023–2078 (2016).

    Article  CAS  Google Scholar 

  4. Küchler, A., Yoshimoto, M., Luginbühl, S., Mavelli, F. & Walde, P. Enzymatic reactions in confined environments. Nat. Nanotechnol. 11, 409–420 (2016).

    Article  CAS  Google Scholar 

  5. Kumar, B. V. V. S. P., Patil, A. J. & Mann, S. Enzyme-powered motility in buoyant organoclay/DNA protocells. Nat. Chem. 10 (2018), 1154–1163.

  6. Sengupta, S., Ibele, M. E. & Sen, A. Fantastic voyage: designing self-powered nanorobots. Angew. Chem. Int. Ed. 51, 8434–8445 (2012).

    Article  CAS  Google Scholar 

  7. Duan, W. et al. Synthetic nano- and micromachines in analytical chemistry: sensing, migration, capture, delivery, and separation. Annu. Rev. Anal. Chem. 8, 311–333 (2015).

    Article  Google Scholar 

  8. Hong, Y., Blackman, N. M. K., Kopp, N. D., Sen, A. & Velegol, D. Chemotaxis of nonbiological colloidal rods. Phys. Rev. Lett. 99, 1–4 (2007).

    Google Scholar 

  9. Baraban, L., Harazim, S. M., Sanchez, S. & Schmidt, O. G. Chemotactic behavior of catalytic motors in microfluidic channels. Angew. Chem. Int. Ed. 52, 5552–5556 (2013).

    Article  CAS  Google Scholar 

  10. Patra, D. et al. Intelligent, self-powered, drug delivery systems. Nanoscale 5, 1273–1283 (2013).

    Article  CAS  Google Scholar 

  11. Sengupta, S. et al. Enzyme molecules as nanomotors. J. Am. Chem. Soc. 135, 1406–1414 (2012).

    Article  CAS  Google Scholar 

  12. Dey, K. K. et al. Micromotors powered by enzyme catalysis. Nano Lett. 15, 8311–8315 (2015).

    Article  CAS  Google Scholar 

  13. Sengupta, S. et al. DNA polymerase as a molecular motor and pump. ACS Nano 8, 2410–2418 (2014).

    Article  CAS  Google Scholar 

  14. Zhao, X. et al. Substrate-driven chemotactic assembly in an enzyme cascade. Nat. Chem. 10, 311–317 (2018).

    Article  CAS  Google Scholar 

  15. Mohajerani, F., Zhao, X., Somasundar, A., Velegol, D. & Sen, A. A theory of enzyme chemotaxis: from experiments to modeling. Biochemistry 57, 6256–6263 (2018).

  16. Jee, A.-Y., Dutta, S., Cho, Y.-K., Tlusty, T. & Granick, S. Enzyme leaps fuel antichemotaxis. Proc. Natl Acad. Sci. USA 115, 14–18 (2017).

    Article  CAS  Google Scholar 

  17. Agudo-Canalejo, J., Illien, P. & Golestanian, R. Phoresis and enhanced diffusion compete in enzyme chemotaxis. Nano Lett. 18, 2711–2717 (2018).

    Article  CAS  Google Scholar 

  18. Zhang, Y. & Cremer, P. S. Interactions between macromolecules and ions: the Hofmeister series. Curr. Opin. Chem. Biol. 10, 658–663 (2006).

    Article  CAS  Google Scholar 

  19. Baldwin, R. L. How Hofmeister ion interactions affect protein stability. Biophys. J. 71, 2056–2063 (1996).

    Article  CAS  Google Scholar 

  20. Collins, K. D. & Washabaugh, M. W. The Hofmeister effect and the behavior of water at interfaces. Q. Rev. Biophys. 18, 323–422 (1985).

    Article  CAS  Google Scholar 

  21. Okur, H. I. et al. Beyond the Hofmeister series: ion-specific effects on proteins and their biological functions. J. Phys. Chem. B 121, 1997–2014 (2017).

    Article  CAS  Google Scholar 

  22. Monteiro, N., Martins, A., Reis, R. L. & Neves, N. M. Liposomes in tissue engineering and regenerative medicine. J. R. Soc. Interface 11, 20140459 (2014).

  23. Joseph, A. et al. Chemotactic synthetic vesicles: design and applications in blood–brain barrier crossing. Sci. Adv. 3, e1700362 (2017).

    Article  CAS  Google Scholar 

  24. Wilson, D. A., Nolte, R. J. M. & Van Hest, J. C. M. Autonomous movement of platinum-loaded stomatocytes. Nat. Chem. 4, 268–274 (2012).

    Article  CAS  Google Scholar 

  25. Peng, F., Tu, Y., Van Hest, J. C. M. & Wilson, D. A. Self-guided supramolecular cargo-loaded nanomotors with chemotactic behavior towards cells. Angew. Chem. Int. Ed. 54, 11662–11665 (2015).

    Article  CAS  Google Scholar 

  26. Jang, W.-S., Kim, H. J., Gao, C., Lee, D. & Hammer, D. A. Enzymatically powered surface-associated self-motile protocells. Small 14, 1801715 (2018).

    Article  CAS  Google Scholar 

  27. Guha, R. et al. Chemotaxis of molecular dyes in polymer gradients in solution. J. Am. Chem. Soc. 139, 15588–15591 (2017).

    Article  CAS  Google Scholar 

  28. Dey, K. K. et al. Chemotactic separation of enzymes. ACS Nano 8, 11941–11949 (2014).

    Article  CAS  Google Scholar 

  29. Xia, L. et al. Kinetic studies on Na+/K+-ATPase and inhibition of Na+/K+-ATPase by ATP. J. Enzym. Inhib. Med. Chem. 19, 333–338 (2004).

    Article  Google Scholar 

  30. Noske, R., Cornelius, F. & Clarke, R. J. Investigation of the enzymatic activity of the Na+,K+-ATPase via isothermal titration microcalorimetry. Biochim. Biophys. Acta 1797, 1540–1545 (2010).

    Article  CAS  Google Scholar 

  31. Kodama, A. et al. Migration of phospholipid vesicles can be selectively driven by concentration gradients of metal chloride solutions. Langmuir 33, 10698–10706 (2017).

    Article  CAS  Google Scholar 

  32. Shin, S. et al. Size-dependent control of colloid transport via solute gradients in dead-end channels. Proc. Natl Acad. Sci. USA 113, 257–261 (2016).

    Article  CAS  Google Scholar 

  33. Gupta, S., Sreeja, K. K. & Thakur, S. Autonomous movement of a chemically powered vesicle. Phys. Rev. E 92, 1–8 (2015).

    CAS  Google Scholar 

  34. Anderson, J. L. Transport mechanisms of biological colloids. Ann. NY Acad. Sci. 469, 166–177 (1986).

    Article  CAS  Google Scholar 

  35. Velegol, D., Garg, A., Guha, R., Kar, A. & Kumar, M. Origins of concentration gradients for diffusiophoresis. Soft Matter 12, 4686–4703 (2016).

    Article  CAS  Google Scholar 

  36. Valdez, L., Shum, H., Ortiz-Rivera, I., Balazs, A. C. & Sen, A. Solutal and thermal buoyancy effects in self-powered phosphatase micropumps. Soft Matter 13, 2800–2807 (2017).

    Article  CAS  Google Scholar 

  37. Sengupta, S. et al. Self-powered enzyme micropumps. Nat. Chem. 6, 415–422 (2014).

    Article  CAS  Google Scholar 

  38. Anderson, J. L. Movement of a semipermeable vesicle through an osmotic gradient. Phys. Fluids 26, 2871 (1983).

    Article  CAS  Google Scholar 

  39. Nardi, J., Bruinsma, R. & Sackmann, E. Vesicles as osmotic motors. Phys. Rev. Lett. 82, 5168–5171 (1999).

    Article  CAS  Google Scholar 

  40. Leontidis, E. Investigations of the Hofmeister series and other specific ion effects using lipid model systems. Adv. Colloid Inteface Sci. 243, 8–22 (2017).

    Article  CAS  Google Scholar 

  41. Clarke, R. J. & Lu, C. Influence of anions and cations on the dipole potential of phosphatidylcholine vesicles: a basis for the Hofmeister effect. Biophys. J. 76, 2614–2624 (1999).

    Article  CAS  Google Scholar 

  42. Mclaughin, S., Bruder, A., Chen, S. & Moser, C. Chaotropic anions and the surface potential of bilayer membranes. Bioehimica Biophys. Acta 394, 304–313 (1975).

    Article  Google Scholar 

  43. Hatefi, Y. & Hanstein, W. G. Solubilization of particulate proteins and nonelectrolytes by chaotropic agents. Proc. Natl Acad. Sci. USA 62, 1129–1136 (1969).

    Article  CAS  Google Scholar 

  44. Hyde, A. M. et al. General principles and strategies for salting-out informed by the Hofmeister series. Org. Process Res. Dev. 21, 1355–1370 (2017).

    Article  CAS  Google Scholar 

  45. Zhang, Y., Furyk, S., Bergbreiter, D. E. & Cremer, P. S. Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series. J. Am. Chem. Soc. 127, 14505–14510 (2005).

    Article  CAS  Google Scholar 

  46. Zhang, Y. et al. Effects of Hofmeister anions on the LCST of PNIPAM as a function of molecular weight. J. Phys. Chem. C 111, 8916–8924 (2007).

    Article  CAS  Google Scholar 

  47. Melander, W. & Horváth, C. Salt effects on hydrophobic interactions in precipitation and chromatography of proteins: an interpretation of the lyotropic series. Arch. Biochem. Biophys. 183, 200–215 (1977).

    Article  CAS  Google Scholar 

  48. Frisken, B. J., Asman, C. & Patty, P. J. Studies of vesicle extrusion. Langmuir 16, 928–933 (2000).

    Article  CAS  Google Scholar 

  49. Loughrey, H., Choi, L., Wong, K. & Cullis, P. R. Preparation of streptavidin-liposomes for use in ligand-specific targeting applications. Liposome Technol. III, 163–178 (1993).

    Google Scholar 

  50. Walde, P. & Ichikawa, S. Enzymes inside lipid vesicles: preparation, reactivity and applications. Biomol. Eng. 18, 143–177 (2001).

    Article  CAS  Google Scholar 

  51. Akashi, K. I., Miyata, H., Itoh, H. & Kinosita, K. Preparation of giant liposomes in physiological conditions and their characterization under an optical microscope. Biophys. J. 71, 3242–3250 (1996).

    Article  CAS  Google Scholar 

  52. Ghosh, S. et al. Motility of enzyme-powered vesicles. Nano Lett. 19, 6019–6026 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Center for Chemical Innovation funded by the National Science Foundation (grant no. CHE-1740630). P.S.C. and D.V. acknowledge the National Science foundation for funding their work (grant nos. CHE-1709735 and CBET-1603716, respectively)

Author information

Authors and Affiliations

Authors

Contributions

The work was conceived by P.S.C., D.V. and A.Sen. A.Somasundar, S.G., F.M., L.N.M. and T.Y. performed the experiments. F.M. carried out the modelling. All the authors contributed to the discussion of results and the writing of the manuscript.

Corresponding authors

Correspondence to Paul S. Cremer, Darrell Velegol or Ayusman Sen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Jinyao Tang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and refs. 1–5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somasundar, A., Ghosh, S., Mohajerani, F. et al. Positive and negative chemotaxis of enzyme-coated liposome motors. Nat. Nanotechnol. 14, 1129–1134 (2019). https://doi.org/10.1038/s41565-019-0578-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-019-0578-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing