Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Determining the phase diagram of atomically thin layered antiferromagnet CrCl3

Abstract

Changes in the spin configuration of atomically thin, magnetic van der Waals multilayers can cause drastic modifications in their opto-electronic properties. Conversely, the opto-electronic response of these systems provides information about the magnetic state, which is very difficult to obtain otherwise. Here, we show that in CrCl3 multilayers, the dependence of the tunnelling conductance on applied magnetic field, temperature and number of layers tracks the evolution of the magnetic state, enabling the magnetic phase diagram to be determined experimentally. Besides a high-field spin-flip transition occurring for all thicknesses, the in-plane magnetoconductance exhibits an even–odd effect due to a low-field spin-flop transition. Through a quantitative analysis of the phenomena, we determine the interlayer exchange coupling as well as the layer magnetization and show that in CrCl3 shape anisotropy dominates. Our results reveal the rich behaviour of atomically thin layered antiferromagnets with weak magnetic anisotropy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tunnelling conductance through CrCl3 multilayers.
Fig. 2: Phase diagram of bi- and trilayer CrCl3.
Fig. 3: Even-odd effects in the magnetoconductance of multilayers.
Fig. 4: Thickness evolution of transition fields and saturation magnetization.
Fig. 5: Temperature dependence.

Similar content being viewed by others

Data availability

All relevant data are available from the corresponding authors upon reasonable and well-motivated request.

References

  1. Lee, J. U. et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 16, 7433–7438 (2016).

    Article  CAS  Google Scholar 

  2. Wang, X. et al. Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS3) crystals. 2D Mater. 3, 031009 (2016).

    Article  CAS  Google Scholar 

  3. Kuo, C.-T. et al. Exfoliation and Raman spectroscopic fingerprint of few-layer NiPS 3 van der Waals crystals. Sci. Rep. 6, 20904 (2016).

    Article  CAS  Google Scholar 

  4. Lin, M.-W. et al. Ultrathin nanosheets of CrSiTe3: a semiconducting two-dimensional ferromagnetic material. J. Mater. Chem. C. 4, 315–322 (2016).

    Article  CAS  Google Scholar 

  5. Du, K.-z et al. Weak van der Waals stacking, wide-range band gap, and Raman study on ultrathin layers of metal phosphorus trichalcogenides. ACS Nano 10, 1738–1743 (2016).

    Article  CAS  Google Scholar 

  6. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article  CAS  Google Scholar 

  7. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    Article  CAS  Google Scholar 

  8. Ghazaryan, D. et al. Magnon-assisted tunnelling in van der waals heterostructures based on CrBr3. Nat. Electron. 1, 344–349 (2018).

    Article  CAS  Google Scholar 

  9. Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    Article  CAS  Google Scholar 

  10. Fei, Z. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 17, 778–782 (2018).

    Article  CAS  Google Scholar 

  11. Wang, Z. et al. Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Lett. 18, 4303–4308 (2018).

    Article  CAS  Google Scholar 

  12. Wang, Z. et al. Electric-field control of magnetism in a few-layered van der waals ferromagnetic semiconductor. Nat. Nanotechnol. 13, 554–559 (2018).

    Article  CAS  Google Scholar 

  13. Bonilla, M. et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 13, 289–293 (2018).

    Article  CAS  Google Scholar 

  14. O’Hara, D. J. et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 18, 3125–3131 (2018).

    Article  CAS  Google Scholar 

  15. Burch, K. S., Mandrus, D. & Park, J.-G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).

    Article  CAS  Google Scholar 

  16. Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, pii: eaav4450 (2019).

    Article  CAS  Google Scholar 

  17. Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).

    Article  CAS  Google Scholar 

  18. Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018).

    Article  CAS  Google Scholar 

  19. Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

    Article  CAS  Google Scholar 

  20. Wang, Z. et al. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. 9, 2516 (2018).

    Article  CAS  Google Scholar 

  21. Kim, H. H. et al. One million percent tunnel magnetoresistance in a magnetic van der Waals heterostructure. Nano Lett. 18, 4885–4890 (2018).

    Article  CAS  Google Scholar 

  22. Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).

    Article  CAS  Google Scholar 

  23. Jiang, S., Li, L., Wang, Z., Mak, K. F. & Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018).

    CAS  Google Scholar 

  24. Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018).

    Article  CAS  Google Scholar 

  25. Jiang, S., Li, L., Wang, Z., Shan, J. & Mak, K. F. Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures. Nat. Electron. 2, 159–163 (2019).

    Article  Google Scholar 

  26. Song, T. et al. Voltage control of a van der Waals spin-filter magnetic tunnel junction. Nano Lett. 19, 915–920 (2019).

    Article  CAS  Google Scholar 

  27. Stryjewski, E. & Giordano, N. Metamagnetism. Adv. Phys. 26, 487–650 (1977).

    Article  CAS  Google Scholar 

  28. Majlis, N. The Quantum Theory of Magnetism 2nd edn (World Scientific, 2007).

  29. Néel, Louis Propriétés magnétiques de l’état métallique et énergie d’interaction entre atomes magnétiques. Ann. Phys. 11, 232–279 (1936).

    Article  Google Scholar 

  30. Ubbink, J., Poulis, J., Gerritsen, H. & Gorter, C. Antiferromagnetic resonance in copper chloride. Physica 19, 928–934 (1953).

    Article  CAS  Google Scholar 

  31. de Jongh, L. & Miedema, A. Experiments on simple magnetic model systems. Adv. Phys. 23, 1–260 (1974).

    Article  Google Scholar 

  32. Dieny, B., Gavigan, J. P. & Rebouillat, J. P. Magnetisation processes, hysteresis and finite-size effects in model multilayer systems of cubic or uniaxial anisotropy with antiferromagnetic coupling between adjacent ferromagnetic layers. J. Phys. Condens. Matter 2, 159–185 (1990).

    Article  Google Scholar 

  33. Nörtemann, F. C., Stamps, R. L., Carriço, A. S. & Camley, R. E. Finite-size effects on spin configurations in antiferromagnetically coupled multilayers. Phys. Rev. B. 46, 10847–10853 (1992).

    Article  Google Scholar 

  34. Wang, R. W., Mills, D. L., Fullerton, E. E., Mattson, J. E. & Bader, S. D. Surface spin-flop transition in Fe/Cr(211) superlattices: experiment and theory. Phys. Rev. Lett. 72, 920–923 (1994).

    Article  CAS  Google Scholar 

  35. Rößler, U. K. & Bogdanov, A. N. Magnetic phases and reorientation transitions in antiferromagnetically coupled multilayers. Phys. Rev. B. 69, 184420 (2004).

    Article  CAS  Google Scholar 

  36. Cable, J., Wilkinson, M. & Wollan, E. Neutron diffraction investigation of antiferromagnetism in CrCl3. J. Phys. Chem. Solids 19, 29–34 (1961).

    Article  CAS  Google Scholar 

  37. Narath, A. Low-temperature sublattice magnetization of antiferromagnetic CrCl3. Phys. Rev. 131, 1929–1942 (1963).

    Article  Google Scholar 

  38. Narath, A. & Davis, H. L. Spin-wave analysis of the sublattice magnetization behavior of antiferromagnetic and ferromagnetic CrCl3. Phys. Rev. 137, A163–A178 (1965).

    Article  Google Scholar 

  39. Kuhlow, B. Magnetic ordering in CrCl3 at the phase transition. Phys. Status Solidi 72, 161–168 (1982).

    Article  CAS  Google Scholar 

  40. McGuire, M. A. et al. Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl3 crystals. Phys. Rev. Mater. 1, 014001 (2017).

    Article  Google Scholar 

  41. Fowler, R. H. & Nordheim, L. Electron emission in intense electric fields. Proc. R. Soc. Lond. A. 119, 173–181 (1928).

    Article  CAS  Google Scholar 

  42. Groot, H. D. & Jongh, L. D. Phase diagrams of weakly anisotropic Heisenberg antiferromagnets, nonlinear excitations (solitons) and random-field effects. Physica B + C. 141, 1–36 (1986).

    Article  Google Scholar 

  43. Moodera, J. S., Hao, X., Gibson, G. A. & Meservey, R. Electron-spin polarization in tunnel junctions in zero applied field with ferromagnetic EuS barriers. Phys. Rev. Lett. 61, 637–640 (1988).

    Article  CAS  Google Scholar 

  44. Worledge, D. C. & Geballe, T. H. Magnetoresistive double spin filter tunnel junction. J. Appl. Phys. 88, 5277–5279 (2000).

    Article  CAS  Google Scholar 

  45. Klein, D. R.et al. Enhancement of interlayer exchange in an ultrathin two-dimensional magnet. Nat. Phys., https://doi.org/10.1038/s41567-019-0651-0 (2019).

  46. Cai, X. et al. Atomically thin CrCl3: an in-plane layered antiferromagnetic insulator. Nano Lett. 19, 3993–3998 (2019).

    Article  CAS  Google Scholar 

  47. Morosin, B. & Narath, A. X‐ray diffraction and nuclear quadrupole resonance studies of chromium trichloride. J. Chem. Phys. 40, 1958–1967 (1964).

    Article  CAS  Google Scholar 

  48. MacNeill, D. et al. Gigahertz frequency antiferromagnetic resonance and strong magnon-magnon coupling in the layered crystal crcl3. Phys. Rev. Lett. 123, 047204 (2019).

    Article  CAS  Google Scholar 

  49. Mills, D. L. Surface spin-flop state in a simple antiferromagnet. Phys. Rev. Lett. 20, 18–21 (1968).

    Article  CAS  Google Scholar 

  50. Blazey, K. W., Rohrer, H. & Webster, R. Magnetocaloric effects and the angular variation of the magnetic phase diagram of antiferromagnetic GdAlO3. Phys. Rev. B. 4, 2287–2302 (1971).

    Article  Google Scholar 

  51. Kim, H. H. et al. Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides. Proc. Natl Acad. Sci. USA 116, 11131–11136 (2019).

    Article  CAS  Google Scholar 

  52. Kim, H. H. et al. Tailored tunnel magnetoresistance response in three ultrathin chromium trihalides. Nano Lett. 19, 5739–5745 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely acknowledge N. Ubrig and H. Henck for helpful discussions and A. Ferreira for technical support. A.F.M. gratefully acknowledges financial support from the Swiss National Science Foundation (Division II) and from the EU Graphene Flagship project. Z.W. acknowledges the National Natural Science Foundation of China (Grants no. 11904276). M.G. acknowledges support from the Swiss National Science Foundation through the Ambizione programme. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, A3 Foresight by the Japan Society for the Promotion of Science (JSPS) and the CREST (JPMJCR15F3), Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Contributions

Z.W., M.G. and A.F.M. conceived the work. D.D. and E.G. grew CrCl3 crystals and performed bulk characterization. T.T. and K.W. provided high-quality boron nitride crystals. Z.W. fabricated all samples and performed all transport measurements. M.G. carried out all theoretical modelling. Z.W., M.G. and A.F.M. analysed and interpreted the magnetoconductance data. All authors contributed to writing the manuscript.

Corresponding authors

Correspondence to Zhe Wang, Marco Gibertini or Alberto F. Morpurgo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–5, Figs. 1–10 and refs. 1–8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Gibertini, M., Dumcenco, D. et al. Determining the phase diagram of atomically thin layered antiferromagnet CrCl3. Nat. Nanotechnol. 14, 1116–1122 (2019). https://doi.org/10.1038/s41565-019-0565-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-019-0565-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing