Abstract
Superconductivity in monolayer transition metal dichalcogenides is characterized by Ising-type pairing induced via a strong Zeeman-type spin–orbit coupling. When two transition metal dichalcogenides layers are coupled, more exotic superconducting phases emerge, which depend on the ratio of Ising-type protection and interlayer coupling strength. Here, we induce superconductivity in suspended MoS2 bilayers and unveil a coupled superconducting state with strong Ising-type spin–orbit coupling. Gating the bilayer symmetrically from both sides by ionic liquid gating varies the interlayer interaction and accesses electronic states with broken local inversion symmetry while maintaining the global inversion symmetry. We observe a strong suppression of the Ising protection that evidences a coupled superconducting state. The symmetric gating scheme not only induces superconductivity in both atomic sheets but also controls the Josephson coupling between the layers, which gives rise to a dimensional crossover in the bilayer.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Covalent bonded bilayers from germanene and stanene with topological giant capacitance effects
npj 2D Materials and Applications Open Access 03 April 2023
-
Generating intense electric fields in 2D materials by dual ionic gating
Nature Communications Open Access 03 November 2022
-
Extremely high upper critical field in BiCh2-based (Ch: S and Se) layered superconductor LaO0.5F0.5BiS2−xSex (x = 0.22 and 0.69)
Scientific Reports Open Access 07 January 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





Data availability
The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.
Change history
16 December 2019
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
References
Lu, J. M. et al. Evidence for two-dimensional Ising superconductivity in gated MoS2. Science 350, 1353–1357 (2015).
Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2015).
Saito, Y. et al. Superconductivity protected by spin–valley locking in ion-gated MoS2. Nat. Phys. 12, 144–149 (2015).
Lu, J. et al. Full superconducting dome of strong Ising protection in gated monolayer WS2. Proc. Natl Acad. Sci. USA 115, 3551–3556 (2018).
de la Barrera, S. C. et al. Tuning Ising superconductivity with layer and spin–orbit coupling in two-dimensional transition-metal dichalcogenides. Nat. Commun. 9, 1427 (2018).
Nakosai, S., Tanaka, Y. & Nagaosa, N. Topological superconductivity in bilayer Rashba system. Phys. Rev. Lett. 108, 147003 (2012).
Liu, C.-X. Unconventional superconductivity in bilayer transition metal dichalcogenides. Phys. Rev. Lett. 118, 087001 (2017).
Nakamura, Y. & Yanase, Y. Odd-parity superconductivity in bilayer transition metal dichalcogenides. Phys. Rev. B. 96, 054501 (2017).
Mizukami, Y. et al. Extremely strong-coupling superconductivity in artificial two-dimensional Kondo lattices. Nat. Phys. 7, 849–853 (2011).
Liu, Y. et al. Interface-induced zeeman-protected superconductivity in ultrathin crystalline lead films. Phys. Rev. X 8, 021002 (2018).
Zhang, X., Liu, Q., Luo, J.-W., Freeman, A. J. & Zunger, A. Hidden spin polarization in inversion-symmetric bulk crystals. Nat. Phys. 10, 387–393 (2014).
Tombros, N. et al. Large yield production of high mobility freely suspended graphene electronic devices on a polydimethylglutarimide based organic polymer. J. Appl. Phys. 109, 093702 (2011).
Wang, F. et al. Ionic liquid gating of suspended MoS2 field-effect transistor devices. Nano Lett. 15, 5284–5288 (2015).
Ye, J. T. et al. Superconducting dome in a gate-tuned band insulator. Science 338, 1193–1196 (2012).
Eknapakul, T. et al. Electronic structure of a Quasi-freestanding MoS2 monolayer. Nano Lett. 14, 1312–1316 (2014).
Kim, B. S., Rhim, J.-W., Kim, B., Kim, C. & Park, S. R. Determination of the band parameters of bulk 2H-MX2 (M = Mo, W; X = S, Se) by angle-resolved photoemission spectroscopy. Sci. Rep. 6, 36389 (2016).
Brumme, T., Calandra, M. & Mauri, F. First-principles theory of field-effect doping in transition-metal dichalcogenides: Structural properties, electronic structure, Hall coefficient, and electrical conductivity. Phys. Rev. B. 91, 155436 (2015).
Ovchinnikov, D. et al. Disorder engineering and conductivity dome in ReS2 with electrolyte gating. Nat. Commun. 7, 12391 (2016).
Coleman, R. V., Eiserman, G. K., Hillenius, S. J., Mitchell, A. T. & Vicent, J. L. Dimensional crossover in the superconducting intercalated layer compound 2H-TaS2. Phys. Rev. B. 27, 125–139 (1983).
Yang, Y. et al. Enhanced superconductivity upon weakening of charge density wave transport in 2H-TaS2 in the two-dimensional limit. Phys. Rev. B. 98, 035203 (2018).
Klemm, R. A., Luther, A. & Beasley, M. R. Theory of the upper critical field in layered superconductors. Phys. Rev. B. 12, 877–891 (1975).
Klemm, R. A. Layered Superconductors Volume 1 International Series of Monographs on Physics, Vol. 153 (Oxford Univ. Press, 2011).
Xia, Y., Xie, W., Ruden, P. P. & Frisbie, C. D. Carrier localization on surfaces of organic semiconductors gated with electrolytes. Phys. Rev. Lett. 105, 036802 (2010).
Talantsev, E. F. et al. On the origin of critical temperature enhancement in atomically thin superconductors. 2D Mater. 4, 025072 (2017).
Inosov, D. S. et al. Crossover from weak to strong pairing in unconventional superconductors. Phys. Rev. B. 83, 214520 (2011).
Devarakonda, A. et al. Evidence for clean 2D superconductivity and field-induced finite-momentum pairing in a bulk vdW superlattice. Preprint at https://arxiv.org/abs/1906.02065 (2019).
Ma, Y. et al. Unusual evolution of B c2 and T c with inclined fields in restacked TaS2 nanosheets. NPJ Quantum Mater. 3, 34 (2018).
Goh, S. K. et al. Anomalous upper critical field in CeCoIn5/YbCoIn5 superlattices with a Rashba-type heavy Fermion interface. Phys. Rev. Lett. 109, 157006 (2012).
Sekihara, T., Masutomi, R. & Okamoto, T. Two-dimensional superconducting state of monolayer Pb films grown on GaAs(110) in a strong parallel magnetic field. Phys. Rev. Lett. 111, 057005 (2013).
Woollam, J. A. & Somoano, R. B. Superconducting critical fields of alkali and alkaline-earth intercalates of MoS2. Phys. Rev. B. 13, 3843–3853 (1976).
Acknowledgements
J.T.Y. acknowledges funding from the European Research Council (consolidator grant no. 648855, Ig-QPD). We acknowledge D.-H. Xu for a fruitful discussion on the KLB model.
Author information
Authors and Affiliations
Contributions
O.Z., J.M.L. and J.T.Y. designed the experiment. O.Z. and J.M.L. fabricated the device and performed the measurements. O.Z., J.M.L., Q.H.C., A.A.E.Y., S.G. and J.T.Y analysed and discussed the data. O.Z. and J.T.Y. wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–6, Tables 1–4 and refs. 1–11.
Rights and permissions
About this article
Cite this article
Zheliuk, O., Lu, J.M., Chen, Q.H. et al. Josephson coupled Ising pairing induced in suspended MoS2 bilayers by double-side ionic gating. Nat. Nanotechnol. 14, 1123–1128 (2019). https://doi.org/10.1038/s41565-019-0564-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41565-019-0564-1
This article is cited by
-
Orbital Fulde–Ferrell–Larkin–Ovchinnikov state in an Ising superconductor
Nature (2023)
-
Covalent bonded bilayers from germanene and stanene with topological giant capacitance effects
npj 2D Materials and Applications (2023)
-
Generating intense electric fields in 2D materials by dual ionic gating
Nature Communications (2022)
-
Quenching the bandgap of two-dimensional semiconductors with a perpendicular electric field
Nature Nanotechnology (2022)
-
Electrostatic gating and intercalation in 2D materials
Nature Reviews Materials (2022)