Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Path towards graphene commercialization from lab to market

Subjects

Abstract

The ground-breaking demonstration of the electric field effect in graphene reported more than a decade ago prompted the strong push towards the commercialization of graphene as evidenced by a wealth of graphene research, patents and applications. Graphene flake production capability has reached thousands of tonnes per year, while continuous graphene sheets of tens of metres in length have become available. Various graphene technologies developed in laboratories have now transformed into commercial products, with the very first demonstrations in sports goods, automotive coatings, conductive inks and touch screens, to name a few. Although challenges related to quality control in graphene materials remain to be addressed, the advancement in the understandings of graphene will propel the commercial success of graphene as a compelling technology. This Review discusses the progress towards commercialization of graphene for the past decade and future perspectives.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: A timeline of landmarks for graphene synthesis and commercialization in the past decade.
Fig. 2: Mass production of graphene as raw materials.
Fig. 3: Selective applications of graphene in composites, energy and environment.
Fig. 4: Selective applications of graphene in electronics and optoelectronics.
Fig. 5: Progress towards defect minimization and standardization of graphene.

References

  1. 1.

    Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    CAS  Google Scholar 

  2. 2.

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Google Scholar 

  3. 3.

    Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    CAS  Google Scholar 

  4. 4.

    Zhang, Y., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    CAS  Google Scholar 

  5. 5.

    Ruoff, R. S. Personal perspectives on graphene: new graphene-related materials on the horizon. MRS Bull. 37, 1314–1318 (2012).

    CAS  Google Scholar 

  6. 6.

    Segal, M. Selling graphene by the ton. Nat. Nanotechnol. 4, 612–614 (2009).

    CAS  Google Scholar 

  7. 7.

    Ren, W. & Cheng, H. M. The global growth of graphene. Nat. Nanotechnol. 9, 726–730 (2014).

    CAS  Google Scholar 

  8. 8.

    Zurutuza, A. & Marinelli, C. Challenges and opportunities in graphene commercialization. Nat. Nanotechnol. 9, 730–734 (2014).

    CAS  Google Scholar 

  9. 9.

    Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015).

    CAS  Google Scholar 

  10. 10.

    Ghaffarzadeh, K. IDTechEx forecasts a $100 million graphene market in 2018. IDTechEx https://www.idtechex.com/en/research-article/idtechex-forecasts-a-100-million-graphene-market-in-2018/4721 (2012).

  11. 11.

    Shelton, J. C., Patil, H. R. & Blakely, J. M. Equilibrium segregation of carbon to a nickel (111) surface: a surface phase transition. Surf. Sci. 43, 493–520 (1974).

    CAS  Google Scholar 

  12. 12.

    Berger, C. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004).

    CAS  Google Scholar 

  13. 13.

    Huang, Y. et al. Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS Nano 9, 10612–10620 (2015).

    CAS  Google Scholar 

  14. 14.

    Zhu, Y., Ji, H., Cheng, H. M. & Ruoff, R. S. Mass production and industrial applications of graphene materials. Natl Sci. Rev. 5, 90–101 (2018).

    CAS  Google Scholar 

  15. 15.

    Brodie, B. C. Sur le poids atomique du graphite. Ann. Chim. Phys. 59, 466–472 (1860).

    Google Scholar 

  16. 16.

    Kohmchutter, V. & Haenni, P. Zur kenntnis des graphitischen kohlenstoffs und der graphitsaure. Anorg. Allg. Chem. 105, 121 (1918).

    Google Scholar 

  17. 17.

    Hummers, W. S. & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    CAS  Google Scholar 

  18. 18.

    Marcano, D. C. et al. Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010).

    CAS  Google Scholar 

  19. 19.

    Eda, G., Fanchini, G. & Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3, 270–274 (2008).

    CAS  Google Scholar 

  20. 20.

    Li, D., Müller, M. B., Gilje, S., Kaner, R. B. & Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008).

    CAS  Google Scholar 

  21. 21.

    Stankovich, S. et al. Graphene-based composite materials. Nature 442, 282–286 (2006).

    CAS  Google Scholar 

  22. 22.

    Dreyer, D. R., Park, S., Bielawski, C. W. & Ruof, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2015).

    Google Scholar 

  23. 23.

    Su, C. Y. et al. Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers. Chem. Mater. 21, 5674–5680 (2009).

    CAS  Google Scholar 

  24. 24.

    Hofmann, U. & Frenzel, A. The reduction of graphite oxide with hydrogen sulphide. Kolloid-Z. 68, 149–151 (1934).

    CAS  Google Scholar 

  25. 25.

    Moon, I. K., Lee, J., Ruoff, R. S. & Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 1, 73 (2010).

    Google Scholar 

  26. 26.

    Pei, S. & Cheng, H.-M. The reduction of graphene oxide. Carbon 50, 3210–3228 (2012).

    CAS  Google Scholar 

  27. 27.

    Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563–568 (2008).

    CAS  Google Scholar 

  28. 28.

    Paton, K. R. et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13, 624–630 (2014).

    CAS  Google Scholar 

  29. 29.

    Kauling, A. P. et al. The worldwide graphene flake production. Adv. Mater. 30, 1–6 (2018).

    Google Scholar 

  30. 30.

    Berger, C., Conrad, E. H. & de Heer, W. A. in Physics of Solid Surfaces Vol. 45B (eds Chiarotti, G. & Chiaradia, P.) Ch. 166 (Springer Materials, 2018).

  31. 31.

    Batzill, M. The surface science of graphene: metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surf. Sci. Rep. 67, 83–115 (2012).

    CAS  Google Scholar 

  32. 32.

    Rosei, R. et al. Structure of graphitic carbon on Ni(111): a surface extended-energy-loss fine-structure study. Phys. Rev. B 28, 1161–1164 (1983).

    CAS  Google Scholar 

  33. 33.

    Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009).

    CAS  Google Scholar 

  34. 34.

    Muñoz, R. & Gómez-Aleixandre, C. Review of CVD synthesis of graphene. Chem. Vap. Depos. 19, 297–322 (2013).

    Google Scholar 

  35. 35.

    Xuesong Li. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Google Scholar 

  36. 36.

    Stampfer, C. et al. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 1, e1500222 (2015).

    Google Scholar 

  37. 37.

    De Fazio, D. et al. High-mobility, wet-transferred graphene grown by chemical vapor deposition. ACS Nano 13, 8926–8935 (2019).

    Google Scholar 

  38. 38.

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    CAS  Google Scholar 

  39. 39.

    Kidambi, P. R. et al. A scalable route to nanoporous large-area atomically thin graphene membranes by roll-to-roll chemical vapor deposition and polymer support casting. ACS Appl. Mater. Interfaces 10, 10369–10378 (2018).

    CAS  Google Scholar 

  40. 40.

    Polsen, E. S., McNerny, D. Q., Viswanath, B., Pattinson, S. W. & John Hart, A. High-speed roll-to-roll manufacturing of graphene using a concentric tube CVD reactor. Sci. Rep. 5, 1–12 (2015).

    Google Scholar 

  41. 41.

    Kobayashi, T. et al. Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl. Phys. Lett. 102, 1–5 (2013).

    Google Scholar 

  42. 42.

    Yamada, T., Ishihara, M., Kim, J., Hasegawa, M. & Iijima, S. A roll-to-roll microwave plasma chemical vapor deposition process for the production of 294 mm width graphene films at low temperature. Carbon N. Y. 50, 2615–2619 (2012).

    CAS  Google Scholar 

  43. 43.

    Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010).

    CAS  Google Scholar 

  44. 44.

    Chandrashekar, B. N. et al. Roll-to-roll green transfer of cvd graphene onto plastic for a transparent and flexible triboelectric nanogenerator. Adv. Mater. 27, 5210–5216 (2015).

    CAS  Google Scholar 

  45. 45.

    Dikin, D. A. et al. Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007).

    CAS  Google Scholar 

  46. 46.

    Zhang, X., Sreekumar, T. V., Liu, T. & Kumar, S. Properties and structure of nitric acid oxidized single wall carbon nanotube films. J. Phys. Chem. B 108, 16435–16440 (2004).

    CAS  Google Scholar 

  47. 47.

    Dowell, M. B. & Howard, R. A. Tensile and compressive properties of flexible graphite foils. Carbon N. Y. 24, 311–323 (1986).

    Google Scholar 

  48. 48.

    Xu, Z. & Gao, C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2, 571 (2011).

    Google Scholar 

  49. 49.

    Xiang, C. et al. Large flake graphene oxide fibers with unconventional 100% knot efficiency and highly aligned small flake graphene oxide fibers. Adv. Mater. 25, 4592–4597 (2013).

    CAS  Google Scholar 

  50. 50.

    Hu, X., Xu, Z., Liu, Z. & Gao, C. Liquid crystal self-templating approach to ultrastrong and tough biomimic composites. Sci. Rep. 3, 1–8 (2013).

    Google Scholar 

  51. 51.

    Xin, G. et al. Highly thermally conductive and mechanically strong graphene fibers. Science 349, 1083–1087 (2015).

    CAS  Google Scholar 

  52. 52.

    Soutis, C. Carbon fiber-reinforced plastics in aircraft construction. Mater. Sci. Eng. A 412, 171–176 (2005).

    Google Scholar 

  53. 53.

    Xu, Z., Liu, Z., Sun, H. & Gao, C. Highly electrically conductive Ag-doped graphene fibers as stretchable conductors. Adv. Mater. 25, 3249–3253 (2013).

    CAS  Google Scholar 

  54. 54.

    Vallés, C., David Núñez, J., Benito, A. M. & Maser, W. K. Flexible conductive graphene paper obtained by direct and gentle annealing of graphene oxide paper. Carbon N. Y. 50, 835–844 (2012).

    Google Scholar 

  55. 55.

    Lin, X. et al. Fabrication of highly-aligned, conductive, and strong graphene papers using ultralarge graphene oxide sheets. ACS Nano 6, 10708–10719 (2012).

    CAS  Google Scholar 

  56. 56.

    Xin, G. et al. Large-area freestanding graphene paper for superior thermal management. Adv. Mater. 26, 4521–4526 (2014).

    CAS  Google Scholar 

  57. 57.

    Chandrasekaran, S. et al. Fracture toughness and failure mechanism of graphene based epoxy composites. Compos. Sci. Technol. 97, 90–99 (2014).

    CAS  Google Scholar 

  58. 58.

    Liang, J. et al. Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47, 922–925 (2009).

    CAS  Google Scholar 

  59. 59.

    Lee, J. et al. Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium. Science 344, 286–290 (2014).

    CAS  Google Scholar 

  60. 60.

    Li, Q. et al. Ultrahigh thermal conductivity of assembled aligned multilayer graphene/epoxy composite. Chem. Mater. 26, 4459–4465 (2014).

    CAS  Google Scholar 

  61. 61.

    Discover a new era of graphene. HEAD https://www.head.com/us-US/sports/tennis/technology/graphene-xt/ (2019).

  62. 62.

    Ding, R. et al. A brief review of corrosion protective films and coatings based on graphene and graphene oxide. J. Alloy. Compd. 764, 1039–1055 (2018).

    CAS  Google Scholar 

  63. 63.

    Ramezanzadeh, B., Mohamadzadeh Moghadam, M. H., Shohani, N. & Mahdavian, M. Effects of highly crystalline and conductive polyaniline/graphene oxide composites on the corrosion protection performance of a zinc-rich epoxy coating. Chem. Eng. J. 320, 363–375 (2017).

    CAS  Google Scholar 

  64. 64.

    Bonaccorso, F. et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 1246501 (2015).

    Google Scholar 

  65. 65.

    Ivanovskii, A. L. Graphene-based and graphene-like materials. Russ. Chem. Rev. 81, 571–605 (2012).

    Google Scholar 

  66. 66.

    Dahn, J. R., Zheng, T., Liu, Y. & Xue, J. S. Mechanisms for lithium insertion in carbonaceous materials. Science 270, 590–593 (1995).

    CAS  Google Scholar 

  67. 67.

    Liu, Y., Xue, J. S., Zheng, T. & Dahn, J. R. Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins. Carbon N. Y. 34, 193–200 (1996).

    CAS  Google Scholar 

  68. 68.

    Vargas C, O. A., Caballero, Á. & Morales, J. Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted?. Nanoscale 4, 2083–2092 (2012).

    CAS  Google Scholar 

  69. 69.

    Kucinskis, G., Bajars, G. & Kleperis, J. Graphene in lithium ion battery cathode materials: A review. J. Power Sources 240, 66–79 (2013).

    CAS  Google Scholar 

  70. 70.

    Zhao, J. et al. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nat. Nanotechnol. 12, 993–999 (2017).

    CAS  Google Scholar 

  71. 71.

    Fang, R. et al. Toward More Reliable Lithium-Sulfur Batteries: An All-Graphene Cathode Structure. ACS Nano 10, 8676–8682 (2016).

    CAS  Google Scholar 

  72. 72.

    Zhu, J., Yang, D., Yin, Z., Yan, Q. & Zhang, H. Graphene and graphene-based materials for energy storage applications. Small 10, 3480–3498 (2014).

    CAS  Google Scholar 

  73. 73.

    Liu, Y., Zhu, Y. & Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4, 540–550 (2019).

    Google Scholar 

  74. 74.

    Son, I. H. et al. Graphene balls for lithium rechargeable batteries with fast charging and high volumetric energy densities. Nat. Commun. 8, 1561 (2017).

    Google Scholar 

  75. 75.

    Xia, J., Chen, F., Li, J. & Tao, N. Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4, 505–509 (2009).

    CAS  Google Scholar 

  76. 76.

    Liu, C., Yu, Z., Neff, D., Zhamu, A. & Jang, B. Z. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10, 4863–4868 (2010).

    CAS  Google Scholar 

  77. 77.

    Liberato, S. De et al. Laser scribing of high-performance. Science 335, 1326–1330 (2012).

    Google Scholar 

  78. 78.

    Kong, L. et al. Free-standing T-Nb2O5/graphene composite papers with ultrahigh gravimetric/volumetric capacitance for Li-ion intercalation pseudocapacitor. ACS Nano 9, 11200–11208 (2015).

    CAS  Google Scholar 

  79. 79.

    Pikkarainen, J. Graphene cuts elevator energy consumption in half. Skeleton Technologies https://www.skeletontech.com/news/press-release-graphene-cuts-elevator-energy-consumption-in-half (2019).

  80. 80.

    Tight, T. H. Unimpeded permeation of water. Science 335, 442–444 (2012).

    Google Scholar 

  81. 81.

    Sun, P. et al. Selective ion penetration of graphene oxide membranes. ACS Nano 7, 428–437 (2013).

    CAS  Google Scholar 

  82. 82.

    Boukhvalov, D. W., Katsnelson, M. I. & Son, Y. W. Origin of anomalous water permeation through graphene oxide membrane. Nano Lett. 13, 3930–3935 (2013).

    CAS  Google Scholar 

  83. 83.

    Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).

    CAS  Google Scholar 

  84. 84.

    Surwade, S. P. et al. Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 10, 459–464 (2015).

    CAS  Google Scholar 

  85. 85.

    Wang, L. et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nat. Nanotechnol. 12, 509–522 (2017).

    CAS  Google Scholar 

  86. 86.

    Meric, I. et al. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 3, 654–659 (2008).

    CAS  Google Scholar 

  87. 87.

    Lin, Y. M. et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science 327, 662 (2010).

    CAS  Google Scholar 

  88. 88.

    Cheng, R. et al. High-frequency self-aligned graphene transistors with transferred gate stacks. Proc. Natl Acad. Sci. USA 109, 11588–11592 (2012).

    CAS  Google Scholar 

  89. 89.

    Wu, Y. et al. High-frequency, scaled graphene transistors on diamond-like carbon. Nature 472, 74–78 (2011).

    CAS  Google Scholar 

  90. 90.

    Wu, Y. et al. 200 GHz Maximum Oscillation Frequency in CVD Graphene Radio Frequency Transistors. ACS Appl. Mater. Interfaces 8, 25645–25649 (2016).

    CAS  Google Scholar 

  91. 91.

    Yu, C. et al. High-frequency flexible graphene field-effect transistors with short gate length of 50 nm and record extrinsic cut-off frequency. Phys. Status Solidi Rapid Res. Lett. 12, 10–13 (2018).

    Google Scholar 

  92. 92.

    Shalaev, V. et al. Wafer-scale graphene integrated circuits. Science 332, 1294–1297 (2011).

    Google Scholar 

  93. 93.

    Moser, J., Barreiro, A. & Bachtold, A. Current-induced cleaning of graphene. Appl. Phys. Lett. 91, 1–4 (2007).

    Google Scholar 

  94. 94.

    Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).

    CAS  Google Scholar 

  95. 95.

    Han, T. H. et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photon. 6, 105–110 (2012).

    CAS  Google Scholar 

  96. 96.

    Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 321, 385–388 (2008).

    CAS  Google Scholar 

  97. 97.

    Zhao, H., Min, K. & Aluru, N. R. Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett. 9, 3012–3015 (2009).

    CAS  Google Scholar 

  98. 98.

    Zang, J. et al. Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater. 12, 321–325 (2013).

    CAS  Google Scholar 

  99. 99.

    Lee, S. K. et al. Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett. 11, 4642–4646 (2011).

    CAS  Google Scholar 

  100. 100.

    Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).

    CAS  Google Scholar 

  101. 101.

    Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

    CAS  Google Scholar 

  102. 102.

    Coleman, J. N. & De, S. Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films. ACS Nano 4, 2713–2720 (2010).

    Google Scholar 

  103. 103.

    Kim, Y. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 544, 340–343 (2017).

    CAS  Google Scholar 

  104. 104.

    Kong, W. et al. Polarity governs atomic interaction through two-dimensional materials. Nat. Mater. 17, 999–1004 (2018).

    CAS  Google Scholar 

  105. 105.

    Shim, J. et al. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science 362, 665–670 (2018).

    CAS  Google Scholar 

  106. 106.

    Kim, J. et al. Layer-resolved graphene transfer via engineered strain layers. Science 342, 833–836 (2013).

    CAS  Google Scholar 

  107. 107.

    Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photon. 4, 611–622 (2010).

    CAS  Google Scholar 

  108. 108.

    Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

    CAS  Google Scholar 

  109. 109.

    Liu, C. H., Chang, Y. C., Norris, T. B. & Zhong, Z. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 9, 273–278 (2014).

    CAS  Google Scholar 

  110. 110.

    Bao, Q. et al. Broadband graphene polarizer. Nat. Photon. 5, 411–415 (2011).

    CAS  Google Scholar 

  111. 111.

    Yu, S., Wu, X., Wang, Y., Guo, X. & Tong, L. 2D materials for optical modulation: challenges and opportunities. Adv. Mater. 29, (2017).

  112. 112.

    Higuchi, T., Heide, C., Ullmann, K., Weber, H. B. & Hommelhoff, P. Light-field-driven currents in graphene. Nature 550, 224–228 (2017).

    Google Scholar 

  113. 113.

    Sorianello, V. et al. Graphene-silicon phase modulators with gigahertz bandwidth. Nat. Photon. 12, 40–44 (2018).

    CAS  Google Scholar 

  114. 114.

    Goossens, S. et al. Broadband image sensor array based on graphene-CMOS integration. Nat. Photon. 11, 366–371 (2017).

    CAS  Google Scholar 

  115. 115.

    Lin, H. et al. Chalcogenide glass-on-graphene photonics. Nat. Photon. 11, 798–805 (2017).

    CAS  Google Scholar 

  116. 116.

    Bao, Q. et al. Atomic-layer craphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 19, 3077–3083 (2009).

    CAS  Google Scholar 

  117. 117.

    Romagnoli, M. et al. Graphene-based integrated photonics for next-generation datacom and telecom. Nat. Rev. Mater. 3, 392–414 (2018).

    CAS  Google Scholar 

  118. 118.

    Pospischil, A. et al. CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photon. 7, 892–896 (2013).

    CAS  Google Scholar 

  119. 119.

    Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014).

    CAS  Google Scholar 

  120. 120.

    Schall, D. et al. Record high bandwidth integrated graphene photodetectors for communication beyond 180 Gb/s. In Proc. Optical Fiber Communication Conference (Ed. McEuen, P. L.) M2I.4 (OSA, 2018).

  121. 121.

    Phare, C. T., Daniel Lee, Y. H., Cardenas, J. & Lipson, M. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photon. 9, 511–514 (2015).

    CAS  Google Scholar 

  122. 122.

    Gan, X. et al. High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene. Nano Lett. 13, 691–696 (2013).

    CAS  Google Scholar 

  123. 123.

    Vicarelli, L. et al. Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 11, 865–871 (2012).

    CAS  Google Scholar 

  124. 124.

    Wu, Y. et al. Graphene Terahertz Modulators by Ionic Liquid Gating. Adv. Mater. 27, 1874–1879 (2015).

    CAS  Google Scholar 

  125. 125.

    Balci, O., Polat, E. O., Kakenov, N. & Kocabas, C. Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun. 6, 6628 (2015).

    CAS  Google Scholar 

  126. 126.

    Kim, K., Choi, J. Y., Kim, T., Cho, S. H. & Chung, H. J. A role for graphene in silicon-based semiconductor devices. Nature 479, 338–344 (2011).

    CAS  Google Scholar 

  127. 127.

    Fogden, S. Ultra-fast graphene photonics for next generation datacomms at the Graphene Pavilion at the Mobile World Congress. Graphene Flagship https://graphene-flagship.eu/ultra-fast-graphene-photonics (2018).

  128. 128.

    Ghosh, S. et al. Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater. 9, 555–558 (2010).

    CAS  Google Scholar 

  129. 129.

    Serov, A. Y., Ong, Z. Y. & Pop, E. Effect of grain boundaries on thermal transport in graphene. Appl. Phys. Lett. 102, (2013).

  130. 130.

    Lindsay, L., Broido, D. A. & Mingo, N. Flexural phonons and thermal transport in graphene. Phys. Rev. B Condens. Matter Mater. Phys. 82, 2–7 (2010).

    Google Scholar 

  131. 131.

    Yu, Q. et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10, 443–449 (2011).

    CAS  Google Scholar 

  132. 132.

    Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011).

    CAS  Google Scholar 

  133. 133.

    Zandiatashbar, A. et al. Effect of defects on the intrinsic strength and stiffness of graphene. Nat. Commun. 5, 3186 (2014).

    Google Scholar 

  134. 134.

    Gómez-navarro, C., Burghard, M. & Kern, K. Elastic properties of chemically derived single graphene sheets. Nano Lett. 8, 2045–2049 (2008).

    Google Scholar 

  135. 135.

    Xiang, H. F. et al. Graphene sheets as anode materials for Li-ion batteries: Preparation, structure, electrochemical properties and mechanism for lithium storage. RSC Adv. 2, 6792–6799 (2012).

    CAS  Google Scholar 

  136. 136.

    Chen, Y. et al. Reduced graphene oxide films with ultrahigh conductivity as Li-ion battery current collectors. Nano Lett. 16, 3616–3623 (2016).

    CAS  Google Scholar 

  137. 137.

    Xin, G. et al. Highly thermally conductive and mechanically strong graphene fibers. Science 349, 1083–1087 (2015).

    CAS  Google Scholar 

  138. 138.

    Voiry, D. et al. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science 353, 1413–1416 (2016).

    CAS  Google Scholar 

  139. 139.

    Bagri, A. et al. Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2, 581–587 (2010).

    CAS  Google Scholar 

  140. 140.

    Nguyen, V. L. et al. Seamless stitching of graphene domains on polished copper (111) foil. Adv. Mater. 27, 1376–1382 (2015).

    CAS  Google Scholar 

  141. 141.

    Reddy, K. M., Gledhill, A. D., Chen, C. H., Drexler, J. M. & Padture, N. P. High quality, transferrable graphene grown on single crystal Cu(111) thin films on basal-plane sapphire. Appl. Phys. Lett. 98, 1–4 (2011).

    Google Scholar 

  142. 142.

    Zhao, L. et al. Influence of copper crystal surface on the CVD growth of large area monolayer graphene. Solid State Commun. 151, 509–513 (2011).

    CAS  Google Scholar 

  143. 143.

    Wu, T. et al. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys. Nat. Mater. 15, 43–47 (2016).

    CAS  Google Scholar 

  144. 144.

    Lee, J. et al. Wafer-scale growth of single-crystal. Science 344, 286–290 (2014).

    CAS  Google Scholar 

  145. 145.

    Lee, J. S. et al. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science 362, 817–821 (2018).

    CAS  Google Scholar 

  146. 146.

    Vlassiouk, I. V. et al. Evolutionary selection growth of two-dimensional materials on polycrystalline substrates. Nat. Mater. 17, 318–322 (2018).

    CAS  Google Scholar 

  147. 147.

    Shim, J. et al. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science 362, 665–670 (2018).

    CAS  Google Scholar 

  148. 148.

    Nolen, C. M., Denina, G., Teweldebrhan, D., Bhanu, B. & Balandin, A. A. High-throughput large-area automated identification and quality control of graphene and few-layer graphene films. ACS Nano 5, 914–922 (2011).

    CAS  Google Scholar 

  149. 149.

    Qi, Z. et al. Rapid identification of the layer number of large-area graphene on copper. Chem. Mater. 30, 2067–2073 (2018).

    CAS  Google Scholar 

  150. 150.

    Banhart, F., Kotakoski, J. & Krasheninnikov, A. V. Structural defects in graphene RID A-3473-2009. ACS Nano 5, 26–41 (2011).

    CAS  Google Scholar 

  151. 151.

    Dresselhaus, M. S., Jorio, A., Souza Filho, A. G. & Saito, R. Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368, 5355–5377 (2010).

    CAS  Google Scholar 

  152. 152.

    Lee, T., Mas’Ud, F. A., Kim, M. J. & Rho, H. Spatially resolved Raman spectroscopy of defects, strains, and strain fluctuations in domain structures of monolayer graphene. Sci. Rep. 7, 1–8 (2017).

    Google Scholar 

  153. 153.

    Li, W., Moon, S., Wojcik, M. & Xu, K. Direct Optical Visualization of Graphene and Its Nanoscale Defects on Transparent Substrates. Nano Lett. 16, 5027–5031 (2016).

    CAS  Google Scholar 

  154. 154.

    Huang, K. C. et al. High-speed spectroscopic transient absorption imaging of defects in graphene. Nano Lett. 18, 1489–1497 (2018).

    CAS  Google Scholar 

  155. 155.

    Braeuninger-Weimer, P. et al. Fast, noncontact, wafer-scale, atomic layer resolved imaging of two-dimensional materials by ellipsometric contrast micrography. ACS Nano 12, 8555–8563 (2018).

    CAS  Google Scholar 

  156. 156.

    Jepsen, P. U. et al. Mapping the electrical properties of large-area graphene. 2D Mater. 4, 042003 (2017).

    Google Scholar 

  157. 157.

    Altan, A. I. & Chen, J. In situ chemical probing of hole defects and cracks in graphene at room temperature. Nanoscale 10, 11052–11063 (2018).

    CAS  Google Scholar 

  158. 158.

    Dong, X. et al. Microscale spectroscopic mapping of 2D optical materials. Adv. Opt. Mater. 1900324 (2019).

  159. 159.

    Nakajima, H. et al. Imaging of local structures affecting electrical transport properties of large graphene sheets by lock-in thermography. Sci. Adv. 5, eaau3407 (2019).

    CAS  Google Scholar 

  160. 160.

    Eckmann, A. et al. Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 12, 3925–3930 (2012).

    CAS  Google Scholar 

  161. 161.

    Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 1–4 (2006).

    Google Scholar 

  162. 162.

    Ferrari, A. C. & Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013).

    CAS  Google Scholar 

  163. 163.

    Shinohara, H. & Tiwari, A. Graphene: an introduction to the fundamentals and industrial applications (John Wiley & Sons, 2015).

  164. 164.

    Morrow, W. K., Pearton, S. J. & Ren, F. Review of graphene as a solid state diffusion barrier. Small 12, 120–134 (2016).

    CAS  Google Scholar 

  165. 165.

    Konstantatos, G. et al. Hybrid graphene – quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363–368 (2012).

    CAS  Google Scholar 

  166. 166.

    Wang, J. I. J. et al. Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures. Nat. Nanotechnol. 14, 120–125 (2019).

    CAS  Google Scholar 

  167. 167.

    Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    CAS  Google Scholar 

  168. 168.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS  Google Scholar 

  169. 169.

    Young, R. J. & Liu, M. The microstructure of a graphene-reinforced tennis racquet. J. Mater. Sci. 51, 3861–3867 (2016).

    CAS  Google Scholar 

  170. 170.

    Foster, C. W. et al. 3D printed graphene based energy storage devices. Sci. Rep. 7, 1–11 (2017).

    Google Scholar 

  171. 171.

    Goldsmith, B. R. et al. Digital biosensing by foundry-fabricated graphene sensors. Sci. Rep. 9, 1–10 (2019).

    CAS  Google Scholar 

  172. 172.

    Van Noorden, R. Beyond sticky tape. Nature 483, S32–S33 (2012).

    Google Scholar 

  173. 173.

    Li, X. et al. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 133, 2816–2819 (2011).

    CAS  Google Scholar 

  174. 174.

    Secor, E. B., Ahn, B. Y., Gao, T. Z., Lewis, J. A. & Hersam, M. C. Rapid and Versatile Photonic Annealing of Graphene Inks for Flexible Printed Electronics. Adv. Mater. 27, 6683–6688 (2015).

    CAS  Google Scholar 

  175. 175.

    Yang, Y. et al. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science 364, 1057–1062 (2019).

    CAS  Google Scholar 

  176. 176.

    Liu, N. et al. Ultratransparent and stretchable graphene electrodes. Sci. Adv. 3, e1700159 (2017).

    Google Scholar 

  177. 177.

    A higher intelligence: Huawei unveils HUAWEI Mate 20 series. Huawei https://www.huawei.com/en/press-events/news/2018/10/huawei-mate20-series (2018).

  178. 178.

    CARDEA ZERO PCIe M.2 SSD. TeamGroup https://www.teamgroupinc.com/en/product/cardea-zero (2017).

  179. 179.

    FGTR Graphene 1.0. Momodesign https://en.momodesign.com/products/fgtr-graphene-1-0 (2016).

  180. 180.

    REBORN Colmar https://www.colmar.it/en-gb/cms/index/stories/colmar-sport-reborn (2017).

  181. 181.

    Featuring graphene technology. HEAD https://www.head.com/us-US/sports/ski/technology/graphene/ (2019).

  182. 182.

    Free your ride. Interceptor. Dassi https://dassi.com/product-range/interceptor-graphene (2018).

  183. 183.

    G-Series. inov-8 https://www.inov-8.com/us/g-series (2018).

  184. 184.

    Audio Liberation. ZOLO https://zoloaudio.com/pages/liberty_series#features (2019).

  185. 185.

    RM 50-03. Richard Mille https://www.richardmille.com/collections/rm-50-03-tourbillon-chronograph-mclaren-f1 (2019).

  186. 186.

    Agile. Nanomed https://nanomedical.com/agile/ (2019).

  187. 187.

    Chongqing Science and Technology Co. Graphene flexible mobile phone. Chongqing Graphene Technology Co. http://www.cqmxi.com/archives1201.html (2019).

  188. 188.

    Emberion to present graphene photonics developments at LASER. Optics.org https://optics.org/news/10/6/18 (2019).

  189. 189.

    Ceraso, D. L. Galapad Settler, the first smartphone made with Grafene, is coming from China GizChina.it https://en.gizchina.it/2015/03/arrivo-dalla-cina-il-galapad-settler-primo-smartphone-realizzato-con-il-grafene/ (2015).

  190. 190.

    Paint and coatings. Applied Graphene Materials https://www.appliedgraphenematerials.com/applications/paints-and-coatings/ (2019).

  191. 191.

    California Lithium Battery (CLB) addresses this fundamental challenge with a new disruptive technology: a silicon-graphene (SiGr) composite anode material. California Lithium Battery https://clbattery.com/the-calbattery-solution/ (2014).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeehwan Kim.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kong, W., Kum, H., Bae, SH. et al. Path towards graphene commercialization from lab to market. Nat. Nanotechnol. 14, 927–938 (2019). https://doi.org/10.1038/s41565-019-0555-2

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research