Path towards graphene commercialization from lab to market

Article metrics

Subjects

Abstract

The ground-breaking demonstration of the electric field effect in graphene reported more than a decade ago prompted the strong push towards the commercialization of graphene as evidenced by a wealth of graphene research, patents and applications. Graphene flake production capability has reached thousands of tonnes per year, while continuous graphene sheets of tens of metres in length have become available. Various graphene technologies developed in laboratories have now transformed into commercial products, with the very first demonstrations in sports goods, automotive coatings, conductive inks and touch screens, to name a few. Although challenges related to quality control in graphene materials remain to be addressed, the advancement in the understandings of graphene will propel the commercial success of graphene as a compelling technology. This Review discusses the progress towards commercialization of graphene for the past decade and future perspectives.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: A timeline of landmarks for graphene synthesis and commercialization in the past decade.
Fig. 2: Mass production of graphene as raw materials.
Fig. 3: Selective applications of graphene in composites, energy and environment.
Fig. 4: Selective applications of graphene in electronics and optoelectronics.
Fig. 5: Progress towards defect minimization and standardization of graphene.

References

  1. 1.

    Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

  2. 2.

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

  3. 3.

    Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

  4. 4.

    Zhang, Y., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

  5. 5.

    Ruoff, R. S. Personal perspectives on graphene: new graphene-related materials on the horizon. MRS Bull. 37, 1314–1318 (2012).

  6. 6.

    Segal, M. Selling graphene by the ton. Nat. Nanotechnol. 4, 612–614 (2009).

  7. 7.

    Ren, W. & Cheng, H. M. The global growth of graphene. Nat. Nanotechnol. 9, 726–730 (2014).

  8. 8.

    Zurutuza, A. & Marinelli, C. Challenges and opportunities in graphene commercialization. Nat. Nanotechnol. 9, 730–734 (2014).

  9. 9.

    Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015).

  10. 10.

    Ghaffarzadeh, K. IDTechEx forecasts a $100 million graphene market in 2018. IDTechEx https://www.idtechex.com/en/research-article/idtechex-forecasts-a-100-million-graphene-market-in-2018/4721 (2012).

  11. 11.

    Shelton, J. C., Patil, H. R. & Blakely, J. M. Equilibrium segregation of carbon to a nickel (111) surface: a surface phase transition. Surf. Sci. 43, 493–520 (1974).

  12. 12.

    Berger, C. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912–19916 (2004).

  13. 13.

    Huang, Y. et al. Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS Nano 9, 10612–10620 (2015).

  14. 14.

    Zhu, Y., Ji, H., Cheng, H. M. & Ruoff, R. S. Mass production and industrial applications of graphene materials. Natl Sci. Rev. 5, 90–101 (2018).

  15. 15.

    Brodie, B. C. Sur le poids atomique du graphite. Ann. Chim. Phys. 59, 466–472 (1860).

  16. 16.

    Kohmchutter, V. & Haenni, P. Zur kenntnis des graphitischen kohlenstoffs und der graphitsaure. Anorg. Allg. Chem. 105, 121 (1918).

  17. 17.

    Hummers, W. S. & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

  18. 18.

    Marcano, D. C. et al. Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010).

  19. 19.

    Eda, G., Fanchini, G. & Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3, 270–274 (2008).

  20. 20.

    Li, D., Müller, M. B., Gilje, S., Kaner, R. B. & Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008).

  21. 21.

    Stankovich, S. et al. Graphene-based composite materials. Nature 442, 282–286 (2006).

  22. 22.

    Dreyer, D. R., Park, S., Bielawski, C. W. & Ruof, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2015).

  23. 23.

    Su, C. Y. et al. Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers. Chem. Mater. 21, 5674–5680 (2009).

  24. 24.

    Hofmann, U. & Frenzel, A. The reduction of graphite oxide with hydrogen sulphide. Kolloid-Z. 68, 149–151 (1934).

  25. 25.

    Moon, I. K., Lee, J., Ruoff, R. S. & Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 1, 73 (2010).

  26. 26.

    Pei, S. & Cheng, H.-M. The reduction of graphene oxide. Carbon 50, 3210–3228 (2012).

  27. 27.

    Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563–568 (2008).

  28. 28.

    Paton, K. R. et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13, 624–630 (2014).

  29. 29.

    Kauling, A. P. et al. The worldwide graphene flake production. Adv. Mater. 30, 1–6 (2018).

  30. 30.

    Berger, C., Conrad, E. H. & de Heer, W. A. in Physics of Solid Surfaces Vol. 45B (eds Chiarotti, G. & Chiaradia, P.) Ch. 166 (Springer Materials, 2018).

  31. 31.

    Batzill, M. The surface science of graphene: metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surf. Sci. Rep. 67, 83–115 (2012).

  32. 32.

    Rosei, R. et al. Structure of graphitic carbon on Ni(111): a surface extended-energy-loss fine-structure study. Phys. Rev. B 28, 1161–1164 (1983).

  33. 33.

    Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009).

  34. 34.

    Muñoz, R. & Gómez-Aleixandre, C. Review of CVD synthesis of graphene. Chem. Vap. Depos. 19, 297–322 (2013).

  35. 35.

    Xuesong Li. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

  36. 36.

    Stampfer, C. et al. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 1, e1500222 (2015).

  37. 37.

    De Fazio, D. et al. High-mobility, wet-transferred graphene grown by chemical vapor deposition. ACS Nano 13, 8926–8935 (2019).

  38. 38.

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

  39. 39.

    Kidambi, P. R. et al. A scalable route to nanoporous large-area atomically thin graphene membranes by roll-to-roll chemical vapor deposition and polymer support casting. ACS Appl. Mater. Interfaces 10, 10369–10378 (2018).

  40. 40.

    Polsen, E. S., McNerny, D. Q., Viswanath, B., Pattinson, S. W. & John Hart, A. High-speed roll-to-roll manufacturing of graphene using a concentric tube CVD reactor. Sci. Rep. 5, 1–12 (2015).

  41. 41.

    Kobayashi, T. et al. Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl. Phys. Lett. 102, 1–5 (2013).

  42. 42.

    Yamada, T., Ishihara, M., Kim, J., Hasegawa, M. & Iijima, S. A roll-to-roll microwave plasma chemical vapor deposition process for the production of 294 mm width graphene films at low temperature. Carbon N. Y. 50, 2615–2619 (2012).

  43. 43.

    Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010).

  44. 44.

    Chandrashekar, B. N. et al. Roll-to-roll green transfer of cvd graphene onto plastic for a transparent and flexible triboelectric nanogenerator. Adv. Mater. 27, 5210–5216 (2015).

  45. 45.

    Dikin, D. A. et al. Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007).

  46. 46.

    Zhang, X., Sreekumar, T. V., Liu, T. & Kumar, S. Properties and structure of nitric acid oxidized single wall carbon nanotube films. J. Phys. Chem. B 108, 16435–16440 (2004).

  47. 47.

    Dowell, M. B. & Howard, R. A. Tensile and compressive properties of flexible graphite foils. Carbon N. Y. 24, 311–323 (1986).

  48. 48.

    Xu, Z. & Gao, C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2, 571 (2011).

  49. 49.

    Xiang, C. et al. Large flake graphene oxide fibers with unconventional 100% knot efficiency and highly aligned small flake graphene oxide fibers. Adv. Mater. 25, 4592–4597 (2013).

  50. 50.

    Hu, X., Xu, Z., Liu, Z. & Gao, C. Liquid crystal self-templating approach to ultrastrong and tough biomimic composites. Sci. Rep. 3, 1–8 (2013).

  51. 51.

    Xin, G. et al. Highly thermally conductive and mechanically strong graphene fibers. Science 349, 1083–1087 (2015).

  52. 52.

    Soutis, C. Carbon fiber-reinforced plastics in aircraft construction. Mater. Sci. Eng. A 412, 171–176 (2005).

  53. 53.

    Xu, Z., Liu, Z., Sun, H. & Gao, C. Highly electrically conductive Ag-doped graphene fibers as stretchable conductors. Adv. Mater. 25, 3249–3253 (2013).

  54. 54.

    Vallés, C., David Núñez, J., Benito, A. M. & Maser, W. K. Flexible conductive graphene paper obtained by direct and gentle annealing of graphene oxide paper. Carbon N. Y. 50, 835–844 (2012).

  55. 55.

    Lin, X. et al. Fabrication of highly-aligned, conductive, and strong graphene papers using ultralarge graphene oxide sheets. ACS Nano 6, 10708–10719 (2012).

  56. 56.

    Xin, G. et al. Large-area freestanding graphene paper for superior thermal management. Adv. Mater. 26, 4521–4526 (2014).

  57. 57.

    Chandrasekaran, S. et al. Fracture toughness and failure mechanism of graphene based epoxy composites. Compos. Sci. Technol. 97, 90–99 (2014).

  58. 58.

    Liang, J. et al. Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47, 922–925 (2009).

  59. 59.

    Lee, J. et al. Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium. Science 344, 286–290 (2014).

  60. 60.

    Li, Q. et al. Ultrahigh thermal conductivity of assembled aligned multilayer graphene/epoxy composite. Chem. Mater. 26, 4459–4465 (2014).

  61. 61.

    Discover a new era of graphene. HEAD https://www.head.com/us-US/sports/tennis/technology/graphene-xt/ (2019).

  62. 62.

    Ding, R. et al. A brief review of corrosion protective films and coatings based on graphene and graphene oxide. J. Alloy. Compd. 764, 1039–1055 (2018).

  63. 63.

    Ramezanzadeh, B., Mohamadzadeh Moghadam, M. H., Shohani, N. & Mahdavian, M. Effects of highly crystalline and conductive polyaniline/graphene oxide composites on the corrosion protection performance of a zinc-rich epoxy coating. Chem. Eng. J. 320, 363–375 (2017).

  64. 64.

    Bonaccorso, F. et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 1246501 (2015).

  65. 65.

    Ivanovskii, A. L. Graphene-based and graphene-like materials. Russ. Chem. Rev. 81, 571–605 (2012).

  66. 66.

    Dahn, J. R., Zheng, T., Liu, Y. & Xue, J. S. Mechanisms for lithium insertion in carbonaceous materials. Science 270, 590–593 (1995).

  67. 67.

    Liu, Y., Xue, J. S., Zheng, T. & Dahn, J. R. Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins. Carbon N. Y. 34, 193–200 (1996).

  68. 68.

    Vargas C, O. A., Caballero, Á. & Morales, J. Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted?. Nanoscale 4, 2083–2092 (2012).

  69. 69.

    Kucinskis, G., Bajars, G. & Kleperis, J. Graphene in lithium ion battery cathode materials: A review. J. Power Sources 240, 66–79 (2013).

  70. 70.

    Zhao, J. et al. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nat. Nanotechnol. 12, 993–999 (2017).

  71. 71.

    Fang, R. et al. Toward More Reliable Lithium-Sulfur Batteries: An All-Graphene Cathode Structure. ACS Nano 10, 8676–8682 (2016).

  72. 72.

    Zhu, J., Yang, D., Yin, Z., Yan, Q. & Zhang, H. Graphene and graphene-based materials for energy storage applications. Small 10, 3480–3498 (2014).

  73. 73.

    Liu, Y., Zhu, Y. & Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4, 540–550 (2019).

  74. 74.

    Son, I. H. et al. Graphene balls for lithium rechargeable batteries with fast charging and high volumetric energy densities. Nat. Commun. 8, 1561 (2017).

  75. 75.

    Xia, J., Chen, F., Li, J. & Tao, N. Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4, 505–509 (2009).

  76. 76.

    Liu, C., Yu, Z., Neff, D., Zhamu, A. & Jang, B. Z. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10, 4863–4868 (2010).

  77. 77.

    Liberato, S. De et al. Laser scribing of high-performance. Science 335, 1326–1330 (2012).

  78. 78.

    Kong, L. et al. Free-standing T-Nb2O5/graphene composite papers with ultrahigh gravimetric/volumetric capacitance for Li-ion intercalation pseudocapacitor. ACS Nano 9, 11200–11208 (2015).

  79. 79.

    Pikkarainen, J. Graphene cuts elevator energy consumption in half. Skeleton Technologies https://www.skeletontech.com/news/press-release-graphene-cuts-elevator-energy-consumption-in-half (2019).

  80. 80.

    Tight, T. H. Unimpeded permeation of water. Science 335, 442–444 (2012).

  81. 81.

    Sun, P. et al. Selective ion penetration of graphene oxide membranes. ACS Nano 7, 428–437 (2013).

  82. 82.

    Boukhvalov, D. W., Katsnelson, M. I. & Son, Y. W. Origin of anomalous water permeation through graphene oxide membrane. Nano Lett. 13, 3930–3935 (2013).

  83. 83.

    Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).

  84. 84.

    Surwade, S. P. et al. Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 10, 459–464 (2015).

  85. 85.

    Wang, L. et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nat. Nanotechnol. 12, 509–522 (2017).

  86. 86.

    Meric, I. et al. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 3, 654–659 (2008).

  87. 87.

    Lin, Y. M. et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science 327, 662 (2010).

  88. 88.

    Cheng, R. et al. High-frequency self-aligned graphene transistors with transferred gate stacks. Proc. Natl Acad. Sci. USA 109, 11588–11592 (2012).

  89. 89.

    Wu, Y. et al. High-frequency, scaled graphene transistors on diamond-like carbon. Nature 472, 74–78 (2011).

  90. 90.

    Wu, Y. et al. 200 GHz Maximum Oscillation Frequency in CVD Graphene Radio Frequency Transistors. ACS Appl. Mater. Interfaces 8, 25645–25649 (2016).

  91. 91.

    Yu, C. et al. High-frequency flexible graphene field-effect transistors with short gate length of 50 nm and record extrinsic cut-off frequency. Phys. Status Solidi Rapid Res. Lett. 12, 10–13 (2018).

  92. 92.

    Shalaev, V. et al. Wafer-scale graphene integrated circuits. Science 332, 1294–1297 (2011).

  93. 93.

    Moser, J., Barreiro, A. & Bachtold, A. Current-induced cleaning of graphene. Appl. Phys. Lett. 91, 1–4 (2007).

  94. 94.

    Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).

  95. 95.

    Han, T. H. et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photon. 6, 105–110 (2012).

  96. 96.

    Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 321, 385–388 (2008).

  97. 97.

    Zhao, H., Min, K. & Aluru, N. R. Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett. 9, 3012–3015 (2009).

  98. 98.

    Zang, J. et al. Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater. 12, 321–325 (2013).

  99. 99.

    Lee, S. K. et al. Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett. 11, 4642–4646 (2011).

  100. 100.

    Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).

  101. 101.

    Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

  102. 102.

    Coleman, J. N. & De, S. Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films. ACS Nano 4, 2713–2720 (2010).

  103. 103.

    Kim, Y. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 544, 340–343 (2017).

  104. 104.

    Kong, W. et al. Polarity governs atomic interaction through two-dimensional materials. Nat. Mater. 17, 999–1004 (2018).

  105. 105.

    Shim, J. et al. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science 362, 665–670 (2018).

  106. 106.

    Kim, J. et al. Layer-resolved graphene transfer via engineered strain layers. Science 342, 833–836 (2013).

  107. 107.

    Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photon. 4, 611–622 (2010).

  108. 108.

    Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

  109. 109.

    Liu, C. H., Chang, Y. C., Norris, T. B. & Zhong, Z. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 9, 273–278 (2014).

  110. 110.

    Bao, Q. et al. Broadband graphene polarizer. Nat. Photon. 5, 411–415 (2011).

  111. 111.

    Yu, S., Wu, X., Wang, Y., Guo, X. & Tong, L. 2D materials for optical modulation: challenges and opportunities. Adv. Mater. 29, (2017).

  112. 112.

    Higuchi, T., Heide, C., Ullmann, K., Weber, H. B. & Hommelhoff, P. Light-field-driven currents in graphene. Nature 550, 224–228 (2017).

  113. 113.

    Sorianello, V. et al. Graphene-silicon phase modulators with gigahertz bandwidth. Nat. Photon. 12, 40–44 (2018).

  114. 114.

    Goossens, S. et al. Broadband image sensor array based on graphene-CMOS integration. Nat. Photon. 11, 366–371 (2017).

  115. 115.

    Lin, H. et al. Chalcogenide glass-on-graphene photonics. Nat. Photon. 11, 798–805 (2017).

  116. 116.

    Bao, Q. et al. Atomic-layer craphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 19, 3077–3083 (2009).

  117. 117.

    Romagnoli, M. et al. Graphene-based integrated photonics for next-generation datacom and telecom. Nat. Rev. Mater. 3, 392–414 (2018).

  118. 118.

    Pospischil, A. et al. CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photon. 7, 892–896 (2013).

  119. 119.

    Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014).

  120. 120.

    Schall, D. et al. Record high bandwidth integrated graphene photodetectors for communication beyond 180 Gb/s. In Proc. Optical Fiber Communication Conference (Ed. McEuen, P. L.) M2I.4 (OSA, 2018).

  121. 121.

    Phare, C. T., Daniel Lee, Y. H., Cardenas, J. & Lipson, M. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photon. 9, 511–514 (2015).

  122. 122.

    Gan, X. et al. High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene. Nano Lett. 13, 691–696 (2013).

  123. 123.

    Vicarelli, L. et al. Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 11, 865–871 (2012).

  124. 124.

    Wu, Y. et al. Graphene Terahertz Modulators by Ionic Liquid Gating. Adv. Mater. 27, 1874–1879 (2015).

  125. 125.

    Balci, O., Polat, E. O., Kakenov, N. & Kocabas, C. Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun. 6, 6628 (2015).

  126. 126.

    Kim, K., Choi, J. Y., Kim, T., Cho, S. H. & Chung, H. J. A role for graphene in silicon-based semiconductor devices. Nature 479, 338–344 (2011).

  127. 127.

    Fogden, S. Ultra-fast graphene photonics for next generation datacomms at the Graphene Pavilion at the Mobile World Congress. Graphene Flagship https://graphene-flagship.eu/ultra-fast-graphene-photonics (2018).

  128. 128.

    Ghosh, S. et al. Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater. 9, 555–558 (2010).

  129. 129.

    Serov, A. Y., Ong, Z. Y. & Pop, E. Effect of grain boundaries on thermal transport in graphene. Appl. Phys. Lett. 102, (2013).

  130. 130.

    Lindsay, L., Broido, D. A. & Mingo, N. Flexural phonons and thermal transport in graphene. Phys. Rev. B Condens. Matter Mater. Phys. 82, 2–7 (2010).

  131. 131.

    Yu, Q. et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10, 443–449 (2011).

  132. 132.

    Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011).

  133. 133.

    Zandiatashbar, A. et al. Effect of defects on the intrinsic strength and stiffness of graphene. Nat. Commun. 5, 3186 (2014).

  134. 134.

    Gómez-navarro, C., Burghard, M. & Kern, K. Elastic properties of chemically derived single graphene sheets. Nano Lett. 8, 2045–2049 (2008).

  135. 135.

    Xiang, H. F. et al. Graphene sheets as anode materials for Li-ion batteries: Preparation, structure, electrochemical properties and mechanism for lithium storage. RSC Adv. 2, 6792–6799 (2012).

  136. 136.

    Chen, Y. et al. Reduced graphene oxide films with ultrahigh conductivity as Li-ion battery current collectors. Nano Lett. 16, 3616–3623 (2016).

  137. 137.

    Xin, G. et al. Highly thermally conductive and mechanically strong graphene fibers. Science 349, 1083–1087 (2015).

  138. 138.

    Voiry, D. et al. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science 353, 1413–1416 (2016).

  139. 139.

    Bagri, A. et al. Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2, 581–587 (2010).

  140. 140.

    Nguyen, V. L. et al. Seamless stitching of graphene domains on polished copper (111) foil. Adv. Mater. 27, 1376–1382 (2015).

  141. 141.

    Reddy, K. M., Gledhill, A. D., Chen, C. H., Drexler, J. M. & Padture, N. P. High quality, transferrable graphene grown on single crystal Cu(111) thin films on basal-plane sapphire. Appl. Phys. Lett. 98, 1–4 (2011).

  142. 142.

    Zhao, L. et al. Influence of copper crystal surface on the CVD growth of large area monolayer graphene. Solid State Commun. 151, 509–513 (2011).

  143. 143.

    Wu, T. et al. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys. Nat. Mater. 15, 43–47 (2016).

  144. 144.

    Lee, J. et al. Wafer-scale growth of single-crystal. Science 344, 286–290 (2014).

  145. 145.

    Lee, J. S. et al. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science 362, 817–821 (2018).

  146. 146.

    Vlassiouk, I. V. et al. Evolutionary selection growth of two-dimensional materials on polycrystalline substrates. Nat. Mater. 17, 318–322 (2018).

  147. 147.

    Shim, J. et al. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science 362, 665–670 (2018).

  148. 148.

    Nolen, C. M., Denina, G., Teweldebrhan, D., Bhanu, B. & Balandin, A. A. High-throughput large-area automated identification and quality control of graphene and few-layer graphene films. ACS Nano 5, 914–922 (2011).

  149. 149.

    Qi, Z. et al. Rapid identification of the layer number of large-area graphene on copper. Chem. Mater. 30, 2067–2073 (2018).

  150. 150.

    Banhart, F., Kotakoski, J. & Krasheninnikov, A. V. Structural defects in graphene RID A-3473-2009. ACS Nano 5, 26–41 (2011).

  151. 151.

    Dresselhaus, M. S., Jorio, A., Souza Filho, A. G. & Saito, R. Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368, 5355–5377 (2010).

  152. 152.

    Lee, T., Mas’Ud, F. A., Kim, M. J. & Rho, H. Spatially resolved Raman spectroscopy of defects, strains, and strain fluctuations in domain structures of monolayer graphene. Sci. Rep. 7, 1–8 (2017).

  153. 153.

    Li, W., Moon, S., Wojcik, M. & Xu, K. Direct Optical Visualization of Graphene and Its Nanoscale Defects on Transparent Substrates. Nano Lett. 16, 5027–5031 (2016).

  154. 154.

    Huang, K. C. et al. High-speed spectroscopic transient absorption imaging of defects in graphene. Nano Lett. 18, 1489–1497 (2018).

  155. 155.

    Braeuninger-Weimer, P. et al. Fast, noncontact, wafer-scale, atomic layer resolved imaging of two-dimensional materials by ellipsometric contrast micrography. ACS Nano 12, 8555–8563 (2018).

  156. 156.

    Jepsen, P. U. et al. Mapping the electrical properties of large-area graphene. 2D Mater. 4, 042003 (2017).

  157. 157.

    Altan, A. I. & Chen, J. In situ chemical probing of hole defects and cracks in graphene at room temperature. Nanoscale 10, 11052–11063 (2018).

  158. 158.

    Dong, X. et al. Microscale spectroscopic mapping of 2D optical materials. Adv. Opt. Mater. 1900324 (2019).

  159. 159.

    Nakajima, H. et al. Imaging of local structures affecting electrical transport properties of large graphene sheets by lock-in thermography. Sci. Adv. 5, eaau3407 (2019).

  160. 160.

    Eckmann, A. et al. Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 12, 3925–3930 (2012).

  161. 161.

    Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 1–4 (2006).

  162. 162.

    Ferrari, A. C. & Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013).

  163. 163.

    Shinohara, H. & Tiwari, A. Graphene: an introduction to the fundamentals and industrial applications (John Wiley & Sons, 2015).

  164. 164.

    Morrow, W. K., Pearton, S. J. & Ren, F. Review of graphene as a solid state diffusion barrier. Small 12, 120–134 (2016).

  165. 165.

    Konstantatos, G. et al. Hybrid graphene – quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363–368 (2012).

  166. 166.

    Wang, J. I. J. et al. Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures. Nat. Nanotechnol. 14, 120–125 (2019).

  167. 167.

    Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

  168. 168.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

  169. 169.

    Young, R. J. & Liu, M. The microstructure of a graphene-reinforced tennis racquet. J. Mater. Sci. 51, 3861–3867 (2016).

  170. 170.

    Foster, C. W. et al. 3D printed graphene based energy storage devices. Sci. Rep. 7, 1–11 (2017).

  171. 171.

    Goldsmith, B. R. et al. Digital biosensing by foundry-fabricated graphene sensors. Sci. Rep. 9, 1–10 (2019).

  172. 172.

    Van Noorden, R. Beyond sticky tape. Nature 483, S32–S33 (2012).

  173. 173.

    Li, X. et al. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 133, 2816–2819 (2011).

  174. 174.

    Secor, E. B., Ahn, B. Y., Gao, T. Z., Lewis, J. A. & Hersam, M. C. Rapid and Versatile Photonic Annealing of Graphene Inks for Flexible Printed Electronics. Adv. Mater. 27, 6683–6688 (2015).

  175. 175.

    Yang, Y. et al. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science 364, 1057–1062 (2019).

  176. 176.

    Liu, N. et al. Ultratransparent and stretchable graphene electrodes. Sci. Adv. 3, e1700159 (2017).

  177. 177.

    A higher intelligence: Huawei unveils HUAWEI Mate 20 series. Huawei https://www.huawei.com/en/press-events/news/2018/10/huawei-mate20-series (2018).

  178. 178.

    CARDEA ZERO PCIe M.2 SSD. TeamGroup https://www.teamgroupinc.com/en/product/cardea-zero (2017).

  179. 179.

    FGTR Graphene 1.0. Momodesign https://en.momodesign.com/products/fgtr-graphene-1-0 (2016).

  180. 180.

    REBORN Colmar https://www.colmar.it/en-gb/cms/index/stories/colmar-sport-reborn (2017).

  181. 181.

    Featuring graphene technology. HEAD https://www.head.com/us-US/sports/ski/technology/graphene/ (2019).

  182. 182.

    Free your ride. Interceptor. Dassi https://dassi.com/product-range/interceptor-graphene (2018).

  183. 183.

    G-Series. inov-8 https://www.inov-8.com/us/g-series (2018).

  184. 184.

    Audio Liberation. ZOLO https://zoloaudio.com/pages/liberty_series#features (2019).

  185. 185.

    RM 50-03. Richard Mille https://www.richardmille.com/collections/rm-50-03-tourbillon-chronograph-mclaren-f1 (2019).

  186. 186.

    Agile. Nanomed https://nanomedical.com/agile/ (2019).

  187. 187.

    Chongqing Science and Technology Co. Graphene flexible mobile phone. Chongqing Graphene Technology Co. http://www.cqmxi.com/archives1201.html (2019).

  188. 188.

    Emberion to present graphene photonics developments at LASER. Optics.org https://optics.org/news/10/6/18 (2019).

  189. 189.

    Ceraso, D. L. Galapad Settler, the first smartphone made with Grafene, is coming from China GizChina.it https://en.gizchina.it/2015/03/arrivo-dalla-cina-il-galapad-settler-primo-smartphone-realizzato-con-il-grafene/ (2015).

  190. 190.

    Paint and coatings. Applied Graphene Materials https://www.appliedgraphenematerials.com/applications/paints-and-coatings/ (2019).

  191. 191.

    California Lithium Battery (CLB) addresses this fundamental challenge with a new disruptive technology: a silicon-graphene (SiGr) composite anode material. California Lithium Battery https://clbattery.com/the-calbattery-solution/ (2014).

Download references

Author information

Correspondence to Jeehwan Kim.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kong, W., Kum, H., Bae, S. et al. Path towards graphene commercialization from lab to market. Nat. Nanotechnol. 14, 927–938 (2019) doi:10.1038/s41565-019-0555-2

Download citation