Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser


We demonstrate the translation of a low-cost, non-precious metal cobalt phosphide (CoP) catalyst from 1 cm2 lab-scale experiments to a commercial-scale 86 cm2 polymer electrolyte membrane (PEM) electrolyser. A two-step bulk synthesis was adopted to produce CoP on a high-surface-area carbon support that was readily integrated into an industrial PEM electrolyser fabrication process. The performance of the CoP was compared head to head with a platinum-based PEM under the same operating conditions (400 psi, 50 °C). CoP was found to be active and stable, operating at 1.86 A cm−2 for >1,700 h of continuous hydrogen production while providing substantial material cost savings relative to platinum. This work illustrates a potential pathway for non-precious hydrogen evolution catalysts developed in past decades to translate to commercial applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Physical and electrochemical characterization of the CoP catalyst.
Fig. 2: PEM electrolyser performance.

Data availability

The X-ray diffraction reference pattern is available from the Materials Project database under the ID mp-22270. Source data for figures is provided along with the paper as a supplemental file. Additional data that supports the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Bertuccioli, L. et al. Development of Water Electrolysis in the European Union (Fuel cells and hydrogen joint undertaking, 2014).

  2. 2.

    Vesborg, P. C. K. & Jaramillo, T. F. RSC Adv. 2, 7933–7947 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    Hinnemann, B. et al. J. Am. Chem. Soc. 36, 5308–5309 (2005).

    Article  Google Scholar 

  4. 4.

    Jaramillo, T. F. et al. Science 317, 100–102 (2007).

    CAS  Article  Google Scholar 

  5. 5.

    Callejas, J. F., Read, C. G., Roske, C. W., Lewis, N. S. & Schaak, R. E. Chem. Mater. 28, 6017–6044 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    Shi, Y. & Zhang, B. Chem. Soc. Rev. 45, 1529–1541 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    Kibsgaard, J. & Jaramillo, T. F. Angew. Chem. Int. Ed. 53, 14433–14437 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    Mccrory, C. C. L. et al. J. Am. Chem. Soc. 137, 4347–4357 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Corrales-Sánchez, T., Ampurdanés, J. & Urakawa, A. Int. J. Hydrog. Energy 39, 20837–20843 (2014).

    Article  Google Scholar 

  10. 10.

    Ng, J. W. D. et al. ChemSusChem. 8, 3512–3519 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Di Giovanni, C. et al. ACS Catal. 6, 2626–2631 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Sun, X. et al. Catalysts 8, 657 (2018).

    Article  Google Scholar 

  13. 13.

    Anantharaj, S. et al. ACS Catal. 6, 8069–8097 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    Xiao, P., Chen, W. & Wang, X. Adv. Energy Mater. 5, 1–13 (2015).

    CAS  Google Scholar 

  15. 15.

    Liu, W. et al. Nat. Commun. 7, 1–9 (2016).

    CAS  Google Scholar 

  16. 16.

    Popczun, E. J., Read, C. G., Roske, C. W., Lewis, N. S. & Schaak, R. E. Angew. Chem. Int. Ed. 53, 5427–5430 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    Kibsgaard, J. et al. Energy Environ. Sci. 8, 3022–3029 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Hellstern, T. R., Benck, J. D., Kibsgaard, J., Hahn, C. & Jaramillo, T. F. Adv. Energy Mater. 6, 1501758 (2016).

    Article  Google Scholar 

  19. 19.

    Wu, Z., Huang, L., Liu, H. & Wang, H. ACS Catal. 9, 2956–2961 (2019).

    CAS  Article  Google Scholar 

  20. 20.

    Saadi, F. H. et al. J. Am. Chem. Soc. 139, 12927–12930 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    Yang, H., Zhang, Y., Hu, F. & Wang, Q. Nano Lett. 15, 7616–7620 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    Zhou, D. et al. J. Mater. Chem. A 4, 10114–10117 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    Martens, S. et al. J. Power Sources 392, 274–284 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    Alia, S. M. et al. J. Electrochem. Soc. 163, F3105–F3112 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    Alia, S. M. & Pivovar, B. S. ACS Catal. 8, 2111–2120 (2018).

    CAS  Article  Google Scholar 

  26. 26.

    Weiß, A. et al. J. Electrochem. Soc. 166, 487–497 (2019).

    Article  Google Scholar 

  27. 27.

    Zhang, Y., Gao, L., Hensen, E. J. M. & Hofmann, J. P. ACS Energy Lett. 3, 1360–1365 (2018).

    CAS  Article  Google Scholar 

  28. 28.

    Ledendecker, M. et al. Angew. Chem. 129, 9899–9903 (2017).

    Article  Google Scholar 

  29. 29.

    James, B., Colella, W., Moton, J., Saur, G. & Ramsden, T. PEM Electrolysis H2A Production Case Study Documentation (US Department of Energy Fuel Cell Technologies Office, 2013).

  30. 30.

    Babic, U., Suermann, M., Büchi, F. N., Gubler, L. & Schmidt, T. J. J. Electrochem. Soc. 164, F387–F399 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    H2@Scale Workshop Report (National Renewale Energy Laboratory, 2017).

Download references


We acknowledge the Department of Defence Small Business Innovation Research Phase I (contract no. N00024-17-P-4507; topic no. N162-107) for financial support and the project manager J. Manney. Fundamental catalyst development efforts were supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division, Catalysis Science Programme through the SUNCAT Centre for Interface Science and Catalysis. Physical characterization of the catalyst in this work was performed at the Stanford Nano Shared Facilities, supported by the National Science Foundation (award no. ECCS-1542152). We thank R. Chin for his assistance with SEM at this facility. M.A.H. acknowledges the support of a National Science Foundation Graduate Research Fellowship.

Author information




L.A.K. and M.A.H. contributed equally to this work and are the primary authors of the manuscript. L.A.K., M.A.H. and T.R.H. synthesized CoP catalysts. L.A.K. performed XRD and SEM characterization. E.V. performed TEM characterization. M.A.H. performed electrochemical lab-scale characterization and testing. C.C., J.M. and N.D. prepared all PEM stack components, assembled and tested the electrolyser and collected all operational data. T.F.J. and K.A. supervised the work. All authors contributed to data analysis and discussions, including manuscript preparation and editing.

Corresponding author

Correspondence to Thomas F. Jaramillo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Foteini Sapountzi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figs. 1–9, Tables 1–4 and refs. 1–8.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

King, L.A., Hubert, M.A., Capuano, C. et al. A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser. Nat. Nanotechnol. 14, 1071–1074 (2019).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research