Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A room-temperature polariton light-emitting diode based on monolayer WS2

Abstract

Exciton polaritons that arise through the strong coupling of excitons and cavity photons are used to demonstrate a wide array of fundamental phenomena and potential applications that range from Bose–Einstein-like condensation1,2,3 to analogue Hamiltonian simulators4,5 and chip-scale interferometers6. Recently, the two-dimensional (2D) transition metal dichalcogenides (TMDs), because of their large exciton binding energies, oscillator strength and valley degree of freedom, have emerged as a very attractive platform to realize exciton polaritons at elevated temperatures7. Achieving the electrical injection of polaritons is attractive both as a precursor to realizing electrically driven polariton lasers as well as for high speed light-emitting diodes (LEDs) for communication systems. Here, we demonstrate an electrically driven polariton LED that operates at room temperature using monolayer tungsten disulfide (WS2) as the emissive material. The extracted external quantum efficiency is ~0.1% and is comparable to recent demonstrations of bulk organic8 and carbon nanotube-based polariton electroluminescence (EL) devices9. The possibility to realize electrically driven polariton LEDs in atomically thin semiconductors at room temperature presents a promising step towards achieving an inversionless electrically driven laser in these systems as well as for ultrafast microcavity LEDs using van der Waals (vdW) materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Device schematic and tunnelling mechanism.
Fig. 2: Polariton dispersion.
Fig. 3: Current-dependent polariton EL intensity.
Fig. 4: Negatively detuned polariton LED.

Similar content being viewed by others

Data availability

Data are available from the corresponding author upon reasonable request.

References

  1. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article  CAS  Google Scholar 

  2. Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. Bose–Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007).

    Article  CAS  Google Scholar 

  3. Deng, H., Weihs, G., Santori, C., Bloch, J. & Yamamoto, Y. Condensation of semiconductor microcavity exciton polaritons. Science 298, 199–202 (2002).

    Article  CAS  Google Scholar 

  4. Berloff, N. G. et al. Realizing the classical XY Hamiltonian in polariton simulators. Nat. Mater. 16, 1120–1126 (2017).

    Article  CAS  Google Scholar 

  5. Amo, A. & Bloch, J. Exciton-polaritons in lattices: a non-linear photonic simulator. C.R. Phys. 17, 934–945 (2016).

    Article  CAS  Google Scholar 

  6. Sturm, C. et al. All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer. Nat. Commun. 5, 3278 (2014).

    Article  CAS  Google Scholar 

  7. Schneider, C., Glazov, M. M., Korn, T., Höfling, S. & Urbaszek, B. Two-dimensional semiconductors in the regime of strong light–matter coupling. Nat. Commun. 9, 2695 (2018).

    Article  Google Scholar 

  8. Gubbin, C. R., Maier, S. A. & Kéna-Cohen, S. Low-voltage polariton electroluminescence from an ultrastrongly coupled organic light-emitting diode. Appl. Phys. Lett. 104, 233302 (2014).

    Article  Google Scholar 

  9. Graf, A. et al. Electrical pumping and tuning of exciton–polaritons in carbon nanotube microcavities. Nat. Mater. 16, 911–917 (2017).

    Article  CAS  Google Scholar 

  10. Withers, F. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015).

    Article  CAS  Google Scholar 

  11. Withers, F. et al. WSe2 light-emitting tunneling transistors with enhanced brightness at room temperature. Nano Lett. 15, 8223–8228 (2015).

    Article  CAS  Google Scholar 

  12. Choi, W. et al. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20, 116 (2017).

    Article  CAS  Google Scholar 

  13. Sun, Z. et al. Optical control of room-temperature valley polaritons. Nat. Photon. 11, 491–496 (2017).

    Article  CAS  Google Scholar 

  14. Dufferwiel, S. et al. Valley-addressable polaritons in atomically thin semiconductors. Nat. Photon. 11, 497–501 (2017).

    Article  CAS  Google Scholar 

  15. Chen, Y.-J., Cain, J. D., Stanev, T. K., Dravid, V. P. & Stern, N. P. Valley-polarized exciton–polaritons in a monolayer semiconductor. Nat. Photon 11, 431–435 (2017).

    Article  CAS  Google Scholar 

  16. Lundt, N. et al. Valley polarized relaxation and upconversion luminescence from Tamm-plasmon trion–polaritons with a MoSe2 monolayer. 2D Mater. 4, 025096 (2017).

    Article  Google Scholar 

  17. Sidler, M. et al. Fermi polaron–polaritons in charge-tunable atomically thin semiconductors. Nat. Phys. 13, 255–261 (2016).

    Article  Google Scholar 

  18. Barachati, F. et al. Interacting polariton fluids in a monolayer of tungsten disulfide. Nat. Nanotechnol. 13, 906–909 (2018).

    Article  CAS  Google Scholar 

  19. Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016).

    Article  CAS  Google Scholar 

  20. Tsintzos, S. I., Pelekanos, N. T., Konstantinidis, G., Hatzopoulos, Z. & Savvidis, P. G. A GaAs polariton light-emitting diode operating near room temperature. Nature 453, 372–375 (2008).

    Article  CAS  Google Scholar 

  21. Zhang, Z. et al. Exciton–polariton light-emitting diode based on a ZnO microwire. Opt. Express 25, 17375–17381 (2017).

    Article  CAS  Google Scholar 

  22. Bajoni, D. et al. Polariton light-emitting diode in a GaAs-based microcavity. Phys. Rev. B 77, 113303 (2008).

    Article  Google Scholar 

  23. Tischler, J. R., Bradley, M. S., Bulović, V., Song, J. H. & Nurmikko, A. Strong coupling in a microcavity LED. Phys. Rev. Lett. 95, 036401 (2005).

    Article  Google Scholar 

  24. Lodden, G. H. & Holmes, R. J. Electrical excitation of microcavity polaritons by radiative pumping from a weakly coupled organic semiconductor. Phys. Rev. B 82, 125317 (2010).

    Article  Google Scholar 

  25. Christogiannis, N. et al. Characterizing the electroluminescence emission from a strongly coupled organic semiconductor microcavity LED. Adv. Opt. Mater. 1, 503–509 (2013).

    Article  Google Scholar 

  26. Chakraborty, B. et al. Control of strong light–matter interaction in monolayer WS2 through electric field gating. Nano Lett. 18, 6455–6460 (2018).

    Article  CAS  Google Scholar 

  27. Lee, B. et al. Electrical tuning of exciton–plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice. Nano Lett. 17, 4541–4547 (2017).

    Article  CAS  Google Scholar 

  28. Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017).

    Article  Google Scholar 

  29. Xi, X. et al. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol. 10, 765–769 (2015).

    Article  CAS  Google Scholar 

  30. Wang, Z. et al. MoTe2: a type-II Weyl topological metal. Phys. Rev. Lett. 117, 056805 (2016).

    Article  Google Scholar 

  31. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the National Science Foundation through the Emerging Frontiers Research and Innovation-2DARE program (EFMA-1542863), the Materials Research Science and Engineering Centers program 420634 and the Army Research Office Multidisciplinary University Research Initiative program (W911NF-17-1-0312). The authors also acknowledge the use of the Nanofabrication Facility at the City University of New York Advanced Science Research Center for the fabrication of the devices.

Author information

Authors and Affiliations

Authors

Contributions

V.M.M., J.G. and B.C. conceived the experiments. J.G., B.C. and M.K. fabricated the devices and performed the measurements. B.C., J.G. and V.M.M. performed data analysis. All the authors contributed to write the manuscript and discuss the results.

Corresponding author

Correspondence to Vinod M. Menon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, J., Chakraborty, B., Khatoniar, M. et al. A room-temperature polariton light-emitting diode based on monolayer WS2. Nat. Nanotechnol. 14, 1024–1028 (2019). https://doi.org/10.1038/s41565-019-0543-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-019-0543-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing