A room-temperature polariton light-emitting diode based on monolayer WS2

Article metrics

Abstract

Exciton polaritons that arise through the strong coupling of excitons and cavity photons are used to demonstrate a wide array of fundamental phenomena and potential applications that range from Bose–Einstein-like condensation1,2,3 to analogue Hamiltonian simulators4,5 and chip-scale interferometers6. Recently, the two-dimensional (2D) transition metal dichalcogenides (TMDs), because of their large exciton binding energies, oscillator strength and valley degree of freedom, have emerged as a very attractive platform to realize exciton polaritons at elevated temperatures7. Achieving the electrical injection of polaritons is attractive both as a precursor to realizing electrically driven polariton lasers as well as for high speed light-emitting diodes (LEDs) for communication systems. Here, we demonstrate an electrically driven polariton LED that operates at room temperature using monolayer tungsten disulfide (WS2) as the emissive material. The extracted external quantum efficiency is ~0.1% and is comparable to recent demonstrations of bulk organic8 and carbon nanotube-based polariton electroluminescence (EL) devices9. The possibility to realize electrically driven polariton LEDs in atomically thin semiconductors at room temperature presents a promising step towards achieving an inversionless electrically driven laser in these systems as well as for ultrafast microcavity LEDs using van der Waals (vdW) materials.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Device schematic and tunnelling mechanism.
Fig. 2: Polariton dispersion.
Fig. 3: Current-dependent polariton EL intensity.
Fig. 4: Negatively detuned polariton LED.

Data availability

Data are available from the corresponding author upon reasonable request.

References

  1. 1.

    Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

  2. 2.

    Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. Bose–Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007).

  3. 3.

    Deng, H., Weihs, G., Santori, C., Bloch, J. & Yamamoto, Y. Condensation of semiconductor microcavity exciton polaritons. Science 298, 199–202 (2002).

  4. 4.

    Berloff, N. G. et al. Realizing the classical XY Hamiltonian in polariton simulators. Nat. Mater. 16, 1120–1126 (2017).

  5. 5.

    Amo, A. & Bloch, J. Exciton-polaritons in lattices: a non-linear photonic simulator. C.R. Phys. 17, 934–945 (2016).

  6. 6.

    Sturm, C. et al. All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer. Nat. Commun. 5, 3278 (2014).

  7. 7.

    Schneider, C., Glazov, M. M., Korn, T., Höfling, S. & Urbaszek, B. Two-dimensional semiconductors in the regime of strong light–matter coupling. Nat. Commun. 9, 2695 (2018).

  8. 8.

    Gubbin, C. R., Maier, S. A. & Kéna-Cohen, S. Low-voltage polariton electroluminescence from an ultrastrongly coupled organic light-emitting diode. Appl. Phys. Lett. 104, 233302 (2014).

  9. 9.

    Graf, A. et al. Electrical pumping and tuning of exciton–polaritons in carbon nanotube microcavities. Nat. Mater. 16, 911–917 (2017).

  10. 10.

    Withers, F. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015).

  11. 11.

    Withers, F. et al. WSe2 light-emitting tunneling transistors with enhanced brightness at room temperature. Nano Lett. 15, 8223–8228 (2015).

  12. 12.

    Choi, W. et al. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20, 116 (2017).

  13. 13.

    Sun, Z. et al. Optical control of room-temperature valley polaritons. Nat. Photon. 11, 491–496 (2017).

  14. 14.

    Dufferwiel, S. et al. Valley-addressable polaritons in atomically thin semiconductors. Nat. Photon. 11, 497–501 (2017).

  15. 15.

    Chen, Y.-J., Cain, J. D., Stanev, T. K., Dravid, V. P. & Stern, N. P. Valley-polarized exciton–polaritons in a monolayer semiconductor. Nat. Photon 11, 431–435 (2017).

  16. 16.

    Lundt, N. et al. Valley polarized relaxation and upconversion luminescence from Tamm-plasmon trion–polaritons with a MoSe2 monolayer. 2D Mater. 4, 025096 (2017).

  17. 17.

    Sidler, M. et al. Fermi polaron–polaritons in charge-tunable atomically thin semiconductors. Nat. Phys. 13, 255–261 (2016).

  18. 18.

    Barachati, F. et al. Interacting polariton fluids in a monolayer of tungsten disulfide. Nat. Nanotechnol. 13, 906–909 (2018).

  19. 19.

    Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016).

  20. 20.

    Tsintzos, S. I., Pelekanos, N. T., Konstantinidis, G., Hatzopoulos, Z. & Savvidis, P. G. A GaAs polariton light-emitting diode operating near room temperature. Nature 453, 372–375 (2008).

  21. 21.

    Zhang, Z. et al. Exciton–polariton light-emitting diode based on a ZnO microwire. Opt. Express 25, 17375–17381 (2017).

  22. 22.

    Bajoni, D. et al. Polariton light-emitting diode in a GaAs-based microcavity. Phys. Rev. B 77, 113303 (2008).

  23. 23.

    Tischler, J. R., Bradley, M. S., Bulović, V., Song, J. H. & Nurmikko, A. Strong coupling in a microcavity LED. Phys. Rev. Lett. 95, 036401 (2005).

  24. 24.

    Lodden, G. H. & Holmes, R. J. Electrical excitation of microcavity polaritons by radiative pumping from a weakly coupled organic semiconductor. Phys. Rev. B 82, 125317 (2010).

  25. 25.

    Christogiannis, N. et al. Characterizing the electroluminescence emission from a strongly coupled organic semiconductor microcavity LED. Adv. Opt. Mater. 1, 503–509 (2013).

  26. 26.

    Chakraborty, B. et al. Control of strong light–matter interaction in monolayer WS2 through electric field gating. Nano Lett. 18, 6455–6460 (2018).

  27. 27.

    Lee, B. et al. Electrical tuning of exciton–plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice. Nano Lett. 17, 4541–4547 (2017).

  28. 28.

    Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017).

  29. 29.

    Xi, X. et al. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol. 10, 765–769 (2015).

  30. 30.

    Wang, Z. et al. MoTe2: a type-II Weyl topological metal. Phys. Rev. Lett. 117, 056805 (2016).

  31. 31.

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

Download references

Acknowledgements

We acknowledge support from the National Science Foundation through the Emerging Frontiers Research and Innovation-2DARE program (EFMA-1542863), the Materials Research Science and Engineering Centers program 420634 and the Army Research Office Multidisciplinary University Research Initiative program (W911NF-17-1-0312). The authors also acknowledge the use of the Nanofabrication Facility at the City University of New York Advanced Science Research Center for the fabrication of the devices.

Author information

V.M.M., J.G. and B.C. conceived the experiments. J.G., B.C. and M.K. fabricated the devices and performed the measurements. B.C., J.G. and V.M.M. performed data analysis. All the authors contributed to write the manuscript and discuss the results.

Correspondence to Vinod M. Menon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark