Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

In situ interface engineering for probing the limit of quantum dot photovoltaic devices


Quantum dot (QD) photovoltaic devices are attractive for their low-cost synthesis, tunable band gap and potentially high power conversion efficiency (PCE). However, the experimentally achieved efficiency to date remains far from ideal. Here, we report an in-situ fabrication and investigation of single TiO2-nanowire/CdSe-QD heterojunction solar cell (QDHSC) using a custom-designed photoelectric transmission electron microscope (TEM) holder. A mobile counter electrode is used to precisely tune the interface area for in situ photoelectrical measurements, which reveals a strong interface area dependent PCE. Theoretical simulations show that the simplified single nanowire solar cell structure can minimize the interface area and associated charge scattering to enable an efficient charge collection. Additionally, the optical antenna effect of nanowire-based QDHSCs can further enhance the absorption and boost the PCE. This study establishes a robust ‘nanolab’ platform in a TEM for in situ photoelectrical studies and provides valuable insight into the interfacial effects in nanoscale solar cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Configuration and performance of a single nanowire QDHSC.
Fig. 2: Enhanced absorption efficiency of a TiO2-nanowire QDHSC.
Fig. 3: The dependence of the photocurrent on the interface area.
Fig. 4: The effect of interface area on the open voltage and the efficiency of a single nanowire QDHSC.
Fig. 5: The mechanism of high efficiency and comparison of single nanowire QDHSCs.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Kamat, P. V. Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 18737–18753 (2008).

    CAS  Article  Google Scholar 

  2. 2.

    Tian, J. et al. Constructing ZnO nanorod array photoelectrodes for highly efficient quantum dot sensitized solar cells. J. Mater. Chem. A 1, 6770–6775 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    Sambur, J. B., Novet, T. & Parkinson, B. A. Multiple exciton collection in a sensitized photovoltaic system. Science 330, 63–66 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    Semonin, O. E. et al. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 1530–1533 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    Hanna, M. C. & Nozik, A. J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 074510 (2006).

    Article  Google Scholar 

  6. 6.

    Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    CAS  Article  Google Scholar 

  7. 7.

    Du, J. et al. Zn–Cu–In–Se quantum dot solar cells with a certified power conversion efficiency of 11.6%. J. Am. Chem. Soc. 138, 4201–4209 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    Shen, Q., Kobayashi, J., Diguna, L. J. & Toyoda, T. Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells. J. Appl. Phys. 103, 084304 (2008).

    Article  Google Scholar 

  9. 9.

    Fan, S.-Q. et al. Highly efficient CdSe quantum-dot-sensitized TiO2 photoelectrodes for solar cell applications. Electrochem. Commun. 11, 1337–1339 (2009).

    CAS  Article  Google Scholar 

  10. 10.

    Lee, Y.-L. & Lo, Y.-S. Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv. Funct. Mater. 19, 604–609 (2009).

    Article  Google Scholar 

  11. 11.

    Lee, H. et al. Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process. Nano Lett. 9, 4221–4227 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    Li, L. et al. Highly efficient CdS quantum dot-sensitized solar cells based on a modified polysulfide electrolyte. J. Am. Chem. Soc. 133, 8458–8460 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    Jin-nouchi, Y., Naya, S. I. & Tada, H. Quantum-dot-sensitized solar cell using a photoanode prepared by in situ photodeposition of CdS on nanocrystalline TiO2 films. J. Phys. Chem. C 114, 16837–16842 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    Sun, Z. et al. Continually adjustable oriented 1D TiO2 nanostructure arrays with controlled growth of morphology and their application in dye-sensitized solar cells. CrystEngComm 14, 5472–5478 (2012).

    CAS  Article  Google Scholar 

  15. 15.

    Sun, Z., Kim, J. H., Zhao, Y., Attard, D. & Dou, S. X. Morphology-controllable 1D–3D nanostructured TiO2 bilayer photoanodes for dye-sensitized solar cells. Chem. Commun. 49, 966–968 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    Chen, X. Y., Ling, T. & Du, X. W. Low-temperature synthesis of ZnO/CdS hierarchical nanostructure for photovoltaic application. Nanoscale 4, 5602–5607 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    Sudhagar, P. et al. High open circuit voltage quantum dot sensitized solar cells manufactured with ZnO nanowire arrays and Si/ZnO branched hierarchical structures. J. Phys. Chem. Lett. 2, 1984–1990 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    Zhu, Z., Qiu, J., Yan, K. & Yang, S. Building high-efficiency CdS/CdSe-sensitized solar cells with a hierarchically branched double-layer architecture. ACS Appl. Mater. Interfaces 5, 4000–4005 (2013).

    CAS  Article  Google Scholar 

  19. 19.

    Zhao, K. et al. Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8% by recombination control. J. Am. Chem. Soc. 137, 5602–5609 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Huang, J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010).

    CAS  Article  Google Scholar 

  21. 21.

    Xu, F. et al. Visualization of lithium-ion transport and phase evolution within and between manganese oxide nanorods. Nat. Commun. 8, 15400 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    Liu, Q. et al. Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv. Mater. 24, 1844–1849 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    Miller, B. K. & Crozier, P. A. System for in situ UV–visible illumination of environmental transmission electron microscopy samples. Microsc. Microanal. 19, 461–469 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    Cavalca, F. et al. Light-induced reduction of cuprous oxide in an environmental transmission electron microscope. Chem. Cat. Chem. 5, 2667–2672 (2013).

    CAS  Google Scholar 

  25. 25.

    Lan, X., Masala, S. & Sargent, E. H. Charge-extraction strategies for colloidal quantum dot photovoltaics. Nat. Mater. 13, 233 (2014).

    CAS  Article  Google Scholar 

  26. 26.

    Tian, B. et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–889 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    Tang, J., Huo, Z., Brittman, S., Gao, H. & Yang, P. Solution-processed core–shell nanowires for efficient photovoltaic cells. Nat. Nanotechnol. 6, 568–572 (2011).

    CAS  Article  Google Scholar 

  28. 28.

    Cao, G. et al. Design of μc-Si:H/a-Si:H coaxial tandem single-nanowire solar cells considering photocurrent matching. Opt. Express 22, A1761–A1767 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    Kempa, T. J., Day, R. W., Kim, S.-K., Park, H.-G. & Lieber, C. M. Semiconductor nanowires: a platform for exploring limits and concepts for nano-enabled solar cells. Energ. Environ. Sci. 6, 719–733 (2013).

    CAS  Article  Google Scholar 

  30. 30.

    Nepal, J., Sadegh Mottaghian, S., Biesecker, M. & Farrokh Baroughi, M. Modeling of trap assisted interfacial charge transfer in dye sensitized solar cells. Appl. Phys. Lett. 102, 203503 (2013).

    Article  Google Scholar 

  31. 31.

    Zhang, S., Yang, X., Numata, Y. & Han, L. Highly efficient dye-sensitized solar cells: progress and future challenges. Energ. Environ. Sci. 6, 1443–1464 (2013).

    Article  Google Scholar 

  32. 32.

    Ni, M., Leung, M. K. H., Leung, D. Y. C. & Sumathy, K. Theoretical modeling of TiO2/TCO interfacial effect on dye-sensitized solar cell performance. Sol. Energy Mater. Sol. Cells 90, 2000–2009 (2006).

    CAS  Article  Google Scholar 

  33. 33.

    De Jongh, P. E. & Vanmaekelbergh, D. Trap-limited electronic transport in assemblies of nanometer-size TiO2 particles. Phys. Rev. Lett. 77, 3427–3430 (1996).

    Article  Google Scholar 

  34. 34.

    Van de Lagemaat, J. & Frank, A. J. Effect of the surface-state distribution on electron transport in dye-sensitized TiO2 solar cells: nonlinear electron-transport kinetics. J. Phys. Chem. B 104, 4292–4294 (2000).

    Article  Google Scholar 

  35. 35.

    Tian, J. & Cao, G. Control of nanostructures and interfaces of metal oxide semiconductors for quantum dots sensitized solar cells. J. Phys. Chem. Lett. 6, 1859–1869 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Abass, A., Shen, H., Bienstman, P. & Maes, B. Angle insensitive enhancement of organic solar cells using metallic gratings. J. Appl. Phys. 109, 023111 (2011).

    Article  Google Scholar 

  37. 37.

    Pan, Z. et al. Near infrared absorption of CdSexTe1–x alloyed quantum dot sensitized solar cells with more than 6% efficiency and high stability. ACS Nano 7, 5215–5222 (2013).

    CAS  Article  Google Scholar 

Download references


This research was supported by National Key Research and Development Program of China (2017YFA0204800), the Natural National Science Foundation of China (Grant nos. 11327901, 11525415, 51420105003, 61106055, 11774051, 61574034 and 61601116), the National Basic Research Program of China (2015CB352106), the Fundamental Research Funds for the Central Universities (2242018K41020). Z.S. appreciates the financial support from the Australian Research Council (ARC) through an ARC Future Fellowship project (FT180100387) and a Discovery Project (DP160102627).

Author information




H.D., F.X., Z.Z. and L.S. conceived and designed the experiments. H.D. performed the experiments. H.D., Z.S., L.S., Z.Z. and X.D. analysed the data and constructed the paper. Y.Z. performed the finite‐difference time‐domain simulation. L.S. contributed materials and analysis tools. H.D. and Z.S. co-wrote the paper with all the authors contributing to the discussion and preparation of the manuscript.

Corresponding authors

Correspondence to Ze Zhang or Xiangfeng Duan or Litao Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Nanotechnology thanks Giorgio Divitini and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–36 and refs. 1–11.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Xu, F., Sun, Z. et al. In situ interface engineering for probing the limit of quantum dot photovoltaic devices. Nat. Nanotechnol. 14, 950–956 (2019).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research