Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High temperature shockwave stabilized single atoms

Abstract

The stability of single-atom catalysts is critical for their practical applications. Although a high temperature can promote the bond formation between metal atoms and the substrate with an enhanced stability, it often causes atom agglomeration and is incompatible with many temperature-sensitive substrates. Here, we report using controllable high-temperature shockwaves to synthesize and stabilize single atoms at very high temperatures (1,500–2,000 K), achieved by a periodic on–off heating that features a short on state (55 ms) and a ten-times longer off state. The high temperature provides the activation energy for atom dispersion by forming thermodynamically favourable metal–defect bonds and the off-state critically ensures the overall stability, especially for the substrate. The resultant high-temperature single atoms exhibit a superior thermal stability as durable catalysts. The reported shockwave method is facile, ultrafast and universal (for example, Pt, Ru and Co single atoms, and carbon, C3N4 and TiO2 substrates), which opens a general route for single-atom manufacturing that is conventionally challenging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In situ high-temperature-shockwave synthesis of HT-SAs on defective carbon.
Fig. 2: Thermal stability of the HT-SAs.
Fig. 3: HT-SA dispersion mechanism and temperature effect
Fig. 4: The generality of the shockwave method and HT-SAs in catalytic reactions.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    Article  CAS  Google Scholar 

  2. Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150–154 (2016).

    Article  CAS  Google Scholar 

  3. Nie, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 358, 1419–1423 (2017).

    Article  CAS  Google Scholar 

  4. Li, H. et al. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation. Nat. Nanotechnol. 13, 411–417 (2018).

    Article  CAS  Google Scholar 

  5. Wei, S. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 13, 856–861 (2018).

    Article  CAS  Google Scholar 

  6. Liu, P. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–800 (2016).

    Article  CAS  Google Scholar 

  7. Lucci, F. R. et al. Selective hydrogenation of 1,3-butadiene on platinum–copper alloys at the single-atom limit. Nat. Commun. 6, 8550 (2015).

    Article  Google Scholar 

  8. Fei, H. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018).

    Article  CAS  Google Scholar 

  9. Tiwari, J. N. et al. Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity. Nat. Energy 3, 773–782 (2018).

    Article  CAS  Google Scholar 

  10. Wei, H. et al. Iced photochemical reduction to synthesize atomically dispersed metals by suppressing nanocrystal growth. Nat. Commun. 8, 1490 (2017).

    Article  Google Scholar 

  11. Duchesne, P. N. et al. Golden single-atomic-site platinum electrocatalysts. Nat. Mater. 17, 1033–1039 (2018).

    Article  CAS  Google Scholar 

  12. Yang, H. Bin et al. Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018).

    Article  CAS  Google Scholar 

  13. Qin, R., Liu, P., Fu, G. & Zheng, N. Strategies for stabilizing atomically dispersed metal catalysts. Small Methods 2, 1700286 (2018).

    Article  Google Scholar 

  14. Chen, Y. et al. Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2, 1242–1264 (2018).

    Article  CAS  Google Scholar 

  15. Liu, J. Catalysis by supported single metal atoms. ACS Catal. 7, 34–59 (2017).

    Article  CAS  Google Scholar 

  16. Pelletier, J. D. A. & Basset, J. M. Catalysis by design: well-defined single-site heterogeneous catalysts. Acc. Chem. Res. 49, 664–677 (2016).

    Article  CAS  Google Scholar 

  17. Zhang, Z. et al. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nat. Commun. 8, 16100 (2017).

    Article  CAS  Google Scholar 

  18. Hansen, T. W., Delariva, A. T., Challa, S. R. & Datye, A. K. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? Acc. Chem. Res. 46, 1720–1730 (2013).

    Article  CAS  Google Scholar 

  19. Risse, T., Shaikhutdinov, S., Nilius, N., Sterrer, M. & Freund, H. J. Gold supported on thin oxide films: from single atoms to nanoparticles. Acc. Chem. Res. 41, 949–956 (2008).

    Article  CAS  Google Scholar 

  20. Kim, Y. T. et al. Fine size control of platinum on carbon nanotubes: from single atoms to clusters. Angew. Chem. Int. Ed. 45, 407–411 (2006).

    Article  CAS  Google Scholar 

  21. Sehested, J., Gelten, J. A. P., Remediakis, I. N., Bengaard, H. & Nørskov, J. K. Sintering of nickel steam-reforming catalysts: effects of temperature and steam and hydrogen pressures. J. Catal. 223, 432–443 (2004).

    Article  CAS  Google Scholar 

  22. Li, X. et al. Single-atom Pt as Co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 28, 2427–2431 (2016).

    Article  CAS  Google Scholar 

  23. Kwak, J. H. et al. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3. Science 325, 1670–1673 (2009).

    Article  CAS  Google Scholar 

  24. Choi, C. H. et al. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 7, 10922 (2016).

    Article  CAS  Google Scholar 

  25. Dvořák, F. et al. Creating single-atom Pt–ceria catalysts by surface step decoration. Nat. Commun. 7, 10801 (2016).

    Article  Google Scholar 

  26. Qiu, H. J. et al. Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew. Chem. Int. Ed. 54, 14031–14035 (2015).

    Article  CAS  Google Scholar 

  27. Liu, L. et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 16, 132–138 (2017).

    Article  CAS  Google Scholar 

  28. Moliner, M. et al. Reversible transformation of Pt nanoparticles into single atoms inside high-silica chabazite zeolite. J. Am. Chem. Soc. 138, 15743–15750 (2016).

    Article  CAS  Google Scholar 

  29. Li, Z. et al. Platinum–nickel frame within metal–organic framework fabricated in situ for hydrogen enrichment and molecular sieving. Nat. Commun. 6, 1–8 (2015).

    Google Scholar 

  30. Yin, P. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55, 10800–10805 (2016).

    Article  CAS  Google Scholar 

  31. Xie, P. et al. Nanoceria-supported single-atom platinum catalysts for direct methane conversion. ACS Catal. 8, 4044–4048 (2018).

    Article  CAS  Google Scholar 

  32. Yao, Y. et al. Carbon welding by ultrafast Joule heating. Nano Lett. 16, 7282–7289 (2016).

    Article  CAS  Google Scholar 

  33. Yao, Y. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 359, 1489–1494 (2018).

    Article  CAS  Google Scholar 

  34. Bugaris, D. E., Smith, M. D. & Zur Loye, H. C. Hydroflux crystal growth of platinum group metal hydroxides: Sr6NaPd2(OH)17, Li2Pt(OH)6, Na2Pt(OH)6, Sr2Pt(OH)8, and Ba2Pt(OH)8. Inorg. Chem. 52, 3836–3844 (2013).

    Article  CAS  Google Scholar 

  35. Cheng, N. et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 7, 13638 (2016).

    Article  CAS  Google Scholar 

  36. Sun, X., Han, P., Li, B. & Zhao, Z. Tunable catalytic performance of single Pt atom on doped graphene in direct dehydrogenation of propane by rational doping: a density functional theory study. J. Phys. Chem. C 122, 1570–1576 (2018).

    Article  CAS  Google Scholar 

  37. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  38. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    Article  CAS  Google Scholar 

  39. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  40. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  41. Sanz-Navarro, C. F. et al. Molecular dynamics simulations of the interactions between platinum clusters and carbon platelets. J. Phys. Chem. A 112, 1392–1402 (2008).

    Article  CAS  Google Scholar 

  42. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  43. Gerceker, D. et al. Methane conversion to ethylene and aromatics on PtSn catalysts. ACS Catal. 7, 2088–2100 (2017).

    Article  CAS  Google Scholar 

  44. Guo, X. et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344, 616–619 (2014).

    Article  CAS  Google Scholar 

  45. Marcano, D. et al. Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010).

    Article  CAS  Google Scholar 

  46. Jacob, R. J., Kline, D. J. & Zachariah, M. R. High speed 2-dimensional temperature measurements of nanothermite composites: probing thermal vs. gas generation effects. J. Appl. Phys. 123, 115902 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This project is not directly funded. We acknowledge the support of the Maryland Nanocenter, its Surface Analysis Center and AIMLab and the University of Maryland supercomputing resources (http://hpcc.umd.edu). Z.H. and R.S.-Y. acknowledge the financial support from NSF-DMR award no. 1809439. P.X. and Chao Wang thank the support from the Advanced Research Projects Agency—Energy (ARPA-E), Department of Energy (DOE) and the Petroleum Research Fund, American Chemical Society. L.M., T.W. and J.L. acknowledge the financial support from the US Department of Energy under Contract DE-AC02-06CH11357. Research conducted at beamline 9-BM used resources of the Advanced Photon Source, an Office of Science User Facility operated for the US DOE by Argonne National Laboratory under Contract no. DE-AC02-06CH11357. Chongmin Wang thanks the support of LDRD of PNNL and the in situ ETEM was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE’s Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the Department of Energy under Contract DE-AC05-76RLO1830.

Author information

Authors and Affiliations

Authors

Contributions

L.H. and Y.Y. contributed to the idea and experimental design. Y.Y., T.L., M.J. and Z.L. conducted the experiments and materials preparation. Z.H. and R.S.-Y. performed the high-resolution microscopy. P.X. and Chao Wang contributed to the catalysis evaluation. L.W., Z.P. and T.L. conducted the simulation analysis. L.M., T.W. and J.L. contributed to the X-ray absorption measurements and analysis. Y.H. and Chongmin Wang performed the in situ environmental microscopy. D.J.K. and M.R.Z. performed the temperature characterization and thermal gravimetric analysis. L.H. and Y.Y. wrote the paper and all the authors commented on the final manuscript.

Corresponding authors

Correspondence to Tianpin Wu, Teng Li, Chao Wang, Reza Shahbazian-Yassar or Liangbing Hu.

Additional information

Peer review information: Nature Nanotechnology thanks Abhaya (Krishna) Datye, Frédéric Jaouen and Yadong Li for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figs. S1–S22.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Huang, Z., Xie, P. et al. High temperature shockwave stabilized single atoms. Nat. Nanotechnol. 14, 851–857 (2019). https://doi.org/10.1038/s41565-019-0518-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-019-0518-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing