Ultrafast coherent nonlinear nanooptics and nanoimaging of graphene

Abstract

With its linear energy dispersion and large transition dipole matrix element, graphene is an attractive material for nonlinear optoelectronic applications. However, the mechanistic origin of its strong nonlinear response, the ultrafast coherent dynamics and the associated nanoscale phenomena have remained elusive due to a lack of suitable experimental techniques. Here, using adiabatic nanofocusing and imaging, we study the broadband four-wave mixing (FWM) response of graphene with nanometre and femtosecond spatio-temporal resolution. We detect a nonlinear signal enhancement at the edges and dependence on the number of layers from excitation areas as small as 104 carbon atoms. Femtosecond FWM nanoimaging and concomitant frequency-domain measurements reveal dephasing on T2 ≈ 6 ± 1 fs timescales, which we attribute to a strong electron–electron interaction. We also identify an unusual non-local FWM response on ~100–400 nm length scales, which we assign to a Doppler effect controlling the nonlinear interaction between the tip near-field momenta and the graphene electrons with high Fermi velocity. These results illustrate the distinct nonlinear nanooptical properties of graphene, expected also in related classes of two-dimensional materials, that could form the basis for improved nonlinear and ultrafast nanophotonic devices.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Graphene FWM nanoimaging.
Fig. 2: Non-locality of the FWM response in graphene.
Fig. 3: Polarization distribution of near-field FWM in graphene.
Fig. 4: FWM nanospectroscopy.
Fig. 5: Femtosecond spatio-temporal FWM imaging.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Mikhailov, S. A. Non-linear electromagnetic response of graphene. Europhys. Lett. 79, 27002 (2007).

  2. 2.

    Glazov, M. M. & Ganichev, S. D. High frequency electric field induced nonlinear effects in graphene. Phys. Rep. 535, 101–138 (2014).

  3. 3.

    Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

  4. 4.

    Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photon. 4, 611–622 (2010).

  5. 5.

    Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

  6. 6.

    Mak, K. F., Ju, L., Wang, F. & Heinz, T. F. Optical spectroscopy of graphene: from the far infrared to the ultraviolet. Solid State Commun. 152, 1341–1349 (2012).

  7. 7.

    Sun, Z., Martinez, A. & Wang, F. Optical modulators with 2D layered materials. Nat. Photon. 10, 227–238 (2016).

  8. 8.

    Wang, Y., Tokman, M. & Belyanin, A. Second-order nonlinear optical response of graphene. Phys. Rev. B 94, 195442 (2016).

  9. 9.

    Cheng, J. L., Vermeulen, N. & Sipe, J. E. Second order optical nonlinearity of graphene due to electric quadrupole and magnetic dipole effects. Sci. Rep. 7, 43843 (2017).

  10. 10.

    Constant, T. J., Hornett, S. M., Chang, D. E. & Hendry, E. All-optical generation of surface plasmons in graphene. Nat. Phys. 12, 124–127 (2016).

  11. 11.

    Bykov, A. Y., Murzina, T. V., Rybin, M. G. & Obraztsova, E. D. Second harmonic generation in multilayer graphene induced by direct electric current. Phys. Rev. B 85, 121413 (2012).

  12. 12.

    An, Y. Q., Nelson, F., Lee, J. U. & Diebold, A. C. Enhanced optical second-harmonic generation from the current-biased graphene/SiO2/Si(001) structure. Nano Lett. 13, 2104–2109 (2013).

  13. 13.

    Cheng, J. L., Vermeulen, N. & Sipe, J. E. DC current induced second order optical nonlinearity in graphene. Opt. Express 22, 15868–15876 (2014).

  14. 14.

    Shan, Y. et al. Stacking symmetry governed second harmonic generation in graphene trilayers. Sci. Adv. 4, eaat0074 (2018).

  15. 15.

    Hendry, E., Hale, P. J., Moger, J., Savchenko, A. K. & Mikhailov, S. A. Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 105, 097401 (2010).

  16. 16.

    Gu, T. et al. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nat. Photon. 6, 554–559 (2012).

  17. 17.

    Ciesielski, R. et al. Graphene near-degenerate four-wave mixing for phase characterization of broadband pulses in ultrafast microscopy. Nano Lett. 15, 4968–4972 (2015).

  18. 18.

    Jiang, T. et al. Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene. Nat. Photon. 12, 430–436 (2018).

  19. 19.

    Kumar, N. et al. Third harmonic generation in graphene and few-layer graphite films. Phys. Rev. B 87, 121406 (2013).

  20. 20.

    Hong, S.-Y. et al. Optical third-harmonic generation in graphene. Phys. Rev. X 3, 021014 (2013).

  21. 21.

    Säynätjoki, A. et al. Rapid large-area multiphoton microscopy for characterization of graphene. ACS Nano 7, 8441–8446 (2013).

  22. 22.

    Woodward, R. I. et al. Characterization of the second- and third-order nonlinear optical susceptibilities of monolayer MoS2 using multiphoton microscopy. 2D Mater. 4, 011006 (2017).

  23. 23.

    Soavi, G. et al. Broadband, electrically tunable third-harmonic generation in graphene. Nat. Nanotechnol. 13, 583–588 (2018).

  24. 24.

    Yoshikawa, N., Tamaya, T. & Tanaka, K. High-harmonic generation in graphene enhanced by elliptically polarized light excitation. Science 356, 736–738 (2017).

  25. 25.

    Hafez, H. A. et al. Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions. Nature 561, 507–511 (2018).

  26. 26.

    Cox, J. D., Silveiro, I. & García de Abajo, F. J. Quantum effects in the nonlinear response of graphene plasmons. ACS Nano 10, 1995–2003 (2016).

  27. 27.

    Cox, J. D. & García de Abajo, F. J. Plasmon-enhanced nonlinear wave mixing in nanostructured graphene. ACS Photon. 2, 306–312 (2015).

  28. 28.

    Cox, J. D., Marini, A. & García de Abajo, F. J. Plasmon-assisted high-harmonic generation in graphene. Nat. Commun. 8, 14380 (2017).

  29. 29.

    Savostianova, N. A. & Mikhailov, S. A. Giant enhancement of the third harmonic in graphene integrated in a layered structure. Appl. Phys. Lett. 107, 181104 (2015).

  30. 30.

    Berweger, S., Atkin, J. M., Xu, X. G., Olmon, R. L. & Raschke, M. B. Femtosecond nanofocusing with full optical waveform control. Nano Lett. 11, 4309–4313 (2011).

  31. 31.

    Berweger, S., Atkin, J. M., Olmon, R. L. & Raschke, M. B. Light on the tip of a needle: plasmonic nanofocusing for spectroscopy on the nanoscale. J. Phys. Chem. Lett. 3, 945–952 (2012).

  32. 32.

    Kravtsov, V., Ulbricht, R., Atkin, J. M. & Raschke, M. B. Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging. Nat. Nanotechnol. 11, 459–464 (2016).

  33. 33.

    Kravtsov, V. et al. Enhanced third-order optical nonlinearity driven by surface-plasmon field gradients. Phys. Rev. Lett. 120, 203903 (2018).

  34. 34.

    Tomita, K., Kojima, Y. & Kannari, F. Selective coherent anti-Stokes Raman scattering microscopy employing dual-wavelength nanofocused ultrafast plasmon pulses. Nano Lett. 18, 1366–1372 (2018).

  35. 35.

    Cheng, J. L., Vermeulen, N. & Sipe, J. E. Third order optical nonlinearity of graphene. New J. Phys. 16, 53014 (2014).

  36. 36.

    Mikhailov, S. A. Quantum theory of the third-order nonlinear electrodynamic effects of graphene. Phys. Rev. B 93, 085403 (2016).

  37. 37.

    Winzer, T., Knorr, A. & Malic, E. Carrier multiplication in graphene. Nano Lett. 10, 4839–4843 (2010).

  38. 38.

    Xing, G., Guo, H., Zhang, X., Sum, T. C. & Huan, C. H. A. The physics of ultrafast saturable absorption in graphene. Opt. Express 18, 4564–4573 (2010).

  39. 39.

    Brida, D. et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nat. Commun. 4, 1987 (2013).

  40. 40.

    Tani, S., Blanchard, F. & Tanaka, K. Ultrafast carrier dynamics in graphene under a high electric field. Phys. Rev. Lett. 109, 166603 (2012).

  41. 41.

    Huang, D. et al. Gate switching of ultrafast photoluminescence in graphene. Nano Lett. 18, 7985–7990 (2018).

  42. 42.

    Kelardeh, H. K., Apalkov, V. & Stockman, M. I. Graphene in ultrafast and superstrong laser fields. Phys. Rev. B 91, 045439 (2015).

  43. 43.

    Higuchi, T., Heide, C., Ullmann, K., Weber, H. B. & Hommelhoff, P. Light-field-driven currents in graphene. Nature 550, 224–228 (2017).

  44. 44.

    Heide, C., Higuchi, T., Weber, H. B. & Hommelhoff, P. Coherent electron trajectory control in graphene. Phys. Rev. Lett. 121, 207401 (2018).

  45. 45.

    Kravtsov, V., Berweger, S., Atkin, J. M. & Raschke, M. B. Control of plasmon emission and dynamics at the transition from classical to quantum coupling. Nano Lett. 14, 5270–5275 (2014).

  46. 46.

    McGuire, J. A., Raschke, M. B. & Shen, Y. R. Electron dynamics of silicon surface states: second-harmonic hole burning on Si(111)−(7 × 7). Phys. Rev. Lett. 96, 087401 (2006).

  47. 47.

    Winzer, T. & Malic, E. The impact of pump fluence on carrier relaxation dynamics in optically excited graphene. J. Phys. Condens. Matter 25, 054201 (2013).

  48. 48.

    Lundeberg, M. B. et al. Tuning quantum nonlocal effects in graphene plasmonics. Science 357, 187–191 (2017).

  49. 49.

    Hwang, C. et al. Fermi velocity engineering in graphene by substrate modification. Sci. Rep. 2, 590 (2012).

  50. 50.

    Neacsu, C. C. et al. Near-field localization in plasmonic superfocusing: a nanoemitter on a tip. Nano Lett. 10, 592–596 (2010).

Download references

Acknowledgements

T.J., V.K. and M.B.R. acknowledge funding from the US Department of Energy, Office of Basic Sciences, Division of Material Sciences and Engineering, under award no. DE-SC0008807. A.B. and M.B.R. acknowledge additional support from the Air Force Office for Scientific Research through grants nos. FA9550-17-1-0341 and FA9550-14-1-0376. V.K. acknowledges support from ITMO Fellowship. M.T. acknowledges support from the Ministry of Science and Higher Education of the Russian Federation under contract no. 14.W03.31.0032. The authors thank R. Ernstorfer for valuable discussions and Y. Cai, J. Yan, G. C. Geschwind and M. May for experimental support.

Author information

V.K., T.J. and M.B.R. conceived and designed the experiments. T.J. and V.K. conducted the measurements. M.T. and A.B. provided the theory. All authors discussed and interpreted the results. T.J. wrote the manuscript with the help of all authors.

Correspondence to Alexey Belyanin or Markus B. Raschke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Nanotechnology thanks Andrea Giugni, Themistoklis Sidiropoulos and other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–15, Supplementary Figs. 1–13 and Supplementary refs. 1–18.

Supplementary Movie 1

Supplementary video of Fig. 5.

Supplementary Movie 2

Supplementary video of Fig. 6.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading