Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ultrafast coherent nonlinear nanooptics and nanoimaging of graphene

Abstract

With its linear energy dispersion and large transition dipole matrix element, graphene is an attractive material for nonlinear optoelectronic applications. However, the mechanistic origin of its strong nonlinear response, the ultrafast coherent dynamics and the associated nanoscale phenomena have remained elusive due to a lack of suitable experimental techniques. Here, using adiabatic nanofocusing and imaging, we study the broadband four-wave mixing (FWM) response of graphene with nanometre and femtosecond spatio-temporal resolution. We detect a nonlinear signal enhancement at the edges and dependence on the number of layers from excitation areas as small as 104 carbon atoms. Femtosecond FWM nanoimaging and concomitant frequency-domain measurements reveal dephasing on T2 ≈ 6 ± 1 fs timescales, which we attribute to a strong electron–electron interaction. We also identify an unusual non-local FWM response on ~100–400 nm length scales, which we assign to a Doppler effect controlling the nonlinear interaction between the tip near-field momenta and the graphene electrons with high Fermi velocity. These results illustrate the distinct nonlinear nanooptical properties of graphene, expected also in related classes of two-dimensional materials, that could form the basis for improved nonlinear and ultrafast nanophotonic devices.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Graphene FWM nanoimaging.
Fig. 2: Non-locality of the FWM response in graphene.
Fig. 3: Polarization distribution of near-field FWM in graphene.
Fig. 4: FWM nanospectroscopy.
Fig. 5: Femtosecond spatio-temporal FWM imaging.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Mikhailov, S. A. Non-linear electromagnetic response of graphene. Europhys. Lett. 79, 27002 (2007).

    Article  Google Scholar 

  2. Glazov, M. M. & Ganichev, S. D. High frequency electric field induced nonlinear effects in graphene. Phys. Rep. 535, 101–138 (2014).

    CAS  Article  Google Scholar 

  3. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

    CAS  Article  Google Scholar 

  4. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photon. 4, 611–622 (2010).

    CAS  Article  Google Scholar 

  5. Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

    CAS  Article  Google Scholar 

  6. Mak, K. F., Ju, L., Wang, F. & Heinz, T. F. Optical spectroscopy of graphene: from the far infrared to the ultraviolet. Solid State Commun. 152, 1341–1349 (2012).

    CAS  Article  Google Scholar 

  7. Sun, Z., Martinez, A. & Wang, F. Optical modulators with 2D layered materials. Nat. Photon. 10, 227–238 (2016).

    CAS  Article  Google Scholar 

  8. Wang, Y., Tokman, M. & Belyanin, A. Second-order nonlinear optical response of graphene. Phys. Rev. B 94, 195442 (2016).

    Article  Google Scholar 

  9. Cheng, J. L., Vermeulen, N. & Sipe, J. E. Second order optical nonlinearity of graphene due to electric quadrupole and magnetic dipole effects. Sci. Rep. 7, 43843 (2017).

    CAS  Article  Google Scholar 

  10. Constant, T. J., Hornett, S. M., Chang, D. E. & Hendry, E. All-optical generation of surface plasmons in graphene. Nat. Phys. 12, 124–127 (2016).

    CAS  Article  Google Scholar 

  11. Bykov, A. Y., Murzina, T. V., Rybin, M. G. & Obraztsova, E. D. Second harmonic generation in multilayer graphene induced by direct electric current. Phys. Rev. B 85, 121413 (2012).

    Article  Google Scholar 

  12. An, Y. Q., Nelson, F., Lee, J. U. & Diebold, A. C. Enhanced optical second-harmonic generation from the current-biased graphene/SiO2/Si(001) structure. Nano Lett. 13, 2104–2109 (2013).

    CAS  Article  Google Scholar 

  13. Cheng, J. L., Vermeulen, N. & Sipe, J. E. DC current induced second order optical nonlinearity in graphene. Opt. Express 22, 15868–15876 (2014).

    CAS  Article  Google Scholar 

  14. Shan, Y. et al. Stacking symmetry governed second harmonic generation in graphene trilayers. Sci. Adv. 4, eaat0074 (2018).

    Article  Google Scholar 

  15. Hendry, E., Hale, P. J., Moger, J., Savchenko, A. K. & Mikhailov, S. A. Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 105, 097401 (2010).

    CAS  Article  Google Scholar 

  16. Gu, T. et al. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nat. Photon. 6, 554–559 (2012).

    CAS  Article  Google Scholar 

  17. Ciesielski, R. et al. Graphene near-degenerate four-wave mixing for phase characterization of broadband pulses in ultrafast microscopy. Nano Lett. 15, 4968–4972 (2015).

    CAS  Article  Google Scholar 

  18. Jiang, T. et al. Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene. Nat. Photon. 12, 430–436 (2018).

    CAS  Article  Google Scholar 

  19. Kumar, N. et al. Third harmonic generation in graphene and few-layer graphite films. Phys. Rev. B 87, 121406 (2013).

    Article  Google Scholar 

  20. Hong, S.-Y. et al. Optical third-harmonic generation in graphene. Phys. Rev. X 3, 021014 (2013).

    Google Scholar 

  21. Säynätjoki, A. et al. Rapid large-area multiphoton microscopy for characterization of graphene. ACS Nano 7, 8441–8446 (2013).

    Article  Google Scholar 

  22. Woodward, R. I. et al. Characterization of the second- and third-order nonlinear optical susceptibilities of monolayer MoS2 using multiphoton microscopy. 2D Mater. 4, 011006 (2017).

    Article  Google Scholar 

  23. Soavi, G. et al. Broadband, electrically tunable third-harmonic generation in graphene. Nat. Nanotechnol. 13, 583–588 (2018).

    CAS  Article  Google Scholar 

  24. Yoshikawa, N., Tamaya, T. & Tanaka, K. High-harmonic generation in graphene enhanced by elliptically polarized light excitation. Science 356, 736–738 (2017).

    CAS  Article  Google Scholar 

  25. Hafez, H. A. et al. Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions. Nature 561, 507–511 (2018).

    CAS  Article  Google Scholar 

  26. Cox, J. D., Silveiro, I. & García de Abajo, F. J. Quantum effects in the nonlinear response of graphene plasmons. ACS Nano 10, 1995–2003 (2016).

    CAS  Article  Google Scholar 

  27. Cox, J. D. & García de Abajo, F. J. Plasmon-enhanced nonlinear wave mixing in nanostructured graphene. ACS Photon. 2, 306–312 (2015).

    CAS  Article  Google Scholar 

  28. Cox, J. D., Marini, A. & García de Abajo, F. J. Plasmon-assisted high-harmonic generation in graphene. Nat. Commun. 8, 14380 (2017).

    CAS  Article  Google Scholar 

  29. Savostianova, N. A. & Mikhailov, S. A. Giant enhancement of the third harmonic in graphene integrated in a layered structure. Appl. Phys. Lett. 107, 181104 (2015).

    Article  Google Scholar 

  30. Berweger, S., Atkin, J. M., Xu, X. G., Olmon, R. L. & Raschke, M. B. Femtosecond nanofocusing with full optical waveform control. Nano Lett. 11, 4309–4313 (2011).

    CAS  Article  Google Scholar 

  31. Berweger, S., Atkin, J. M., Olmon, R. L. & Raschke, M. B. Light on the tip of a needle: plasmonic nanofocusing for spectroscopy on the nanoscale. J. Phys. Chem. Lett. 3, 945–952 (2012).

    CAS  Article  Google Scholar 

  32. Kravtsov, V., Ulbricht, R., Atkin, J. M. & Raschke, M. B. Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging. Nat. Nanotechnol. 11, 459–464 (2016).

    CAS  Article  Google Scholar 

  33. Kravtsov, V. et al. Enhanced third-order optical nonlinearity driven by surface-plasmon field gradients. Phys. Rev. Lett. 120, 203903 (2018).

    CAS  Article  Google Scholar 

  34. Tomita, K., Kojima, Y. & Kannari, F. Selective coherent anti-Stokes Raman scattering microscopy employing dual-wavelength nanofocused ultrafast plasmon pulses. Nano Lett. 18, 1366–1372 (2018).

    CAS  Article  Google Scholar 

  35. Cheng, J. L., Vermeulen, N. & Sipe, J. E. Third order optical nonlinearity of graphene. New J. Phys. 16, 53014 (2014).

    Article  Google Scholar 

  36. Mikhailov, S. A. Quantum theory of the third-order nonlinear electrodynamic effects of graphene. Phys. Rev. B 93, 085403 (2016).

    Article  Google Scholar 

  37. Winzer, T., Knorr, A. & Malic, E. Carrier multiplication in graphene. Nano Lett. 10, 4839–4843 (2010).

    CAS  Article  Google Scholar 

  38. Xing, G., Guo, H., Zhang, X., Sum, T. C. & Huan, C. H. A. The physics of ultrafast saturable absorption in graphene. Opt. Express 18, 4564–4573 (2010).

    CAS  Article  Google Scholar 

  39. Brida, D. et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nat. Commun. 4, 1987 (2013).

    CAS  Article  Google Scholar 

  40. Tani, S., Blanchard, F. & Tanaka, K. Ultrafast carrier dynamics in graphene under a high electric field. Phys. Rev. Lett. 109, 166603 (2012).

    Article  Google Scholar 

  41. Huang, D. et al. Gate switching of ultrafast photoluminescence in graphene. Nano Lett. 18, 7985–7990 (2018).

    CAS  Article  Google Scholar 

  42. Kelardeh, H. K., Apalkov, V. & Stockman, M. I. Graphene in ultrafast and superstrong laser fields. Phys. Rev. B 91, 045439 (2015).

    Article  Google Scholar 

  43. Higuchi, T., Heide, C., Ullmann, K., Weber, H. B. & Hommelhoff, P. Light-field-driven currents in graphene. Nature 550, 224–228 (2017).

    Article  Google Scholar 

  44. Heide, C., Higuchi, T., Weber, H. B. & Hommelhoff, P. Coherent electron trajectory control in graphene. Phys. Rev. Lett. 121, 207401 (2018).

    CAS  Article  Google Scholar 

  45. Kravtsov, V., Berweger, S., Atkin, J. M. & Raschke, M. B. Control of plasmon emission and dynamics at the transition from classical to quantum coupling. Nano Lett. 14, 5270–5275 (2014).

    CAS  Article  Google Scholar 

  46. McGuire, J. A., Raschke, M. B. & Shen, Y. R. Electron dynamics of silicon surface states: second-harmonic hole burning on Si(111)−(7 × 7). Phys. Rev. Lett. 96, 087401 (2006).

    Article  Google Scholar 

  47. Winzer, T. & Malic, E. The impact of pump fluence on carrier relaxation dynamics in optically excited graphene. J. Phys. Condens. Matter 25, 054201 (2013).

    CAS  Article  Google Scholar 

  48. Lundeberg, M. B. et al. Tuning quantum nonlocal effects in graphene plasmonics. Science 357, 187–191 (2017).

    CAS  Article  Google Scholar 

  49. Hwang, C. et al. Fermi velocity engineering in graphene by substrate modification. Sci. Rep. 2, 590 (2012).

    Article  Google Scholar 

  50. Neacsu, C. C. et al. Near-field localization in plasmonic superfocusing: a nanoemitter on a tip. Nano Lett. 10, 592–596 (2010).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

T.J., V.K. and M.B.R. acknowledge funding from the US Department of Energy, Office of Basic Sciences, Division of Material Sciences and Engineering, under award no. DE-SC0008807. A.B. and M.B.R. acknowledge additional support from the Air Force Office for Scientific Research through grants nos. FA9550-17-1-0341 and FA9550-14-1-0376. V.K. acknowledges support from ITMO Fellowship. M.T. acknowledges support from the Ministry of Science and Higher Education of the Russian Federation under contract no. 14.W03.31.0032. The authors thank R. Ernstorfer for valuable discussions and Y. Cai, J. Yan, G. C. Geschwind and M. May for experimental support.

Author information

Authors and Affiliations

Authors

Contributions

V.K., T.J. and M.B.R. conceived and designed the experiments. T.J. and V.K. conducted the measurements. M.T. and A.B. provided the theory. All authors discussed and interpreted the results. T.J. wrote the manuscript with the help of all authors.

Corresponding authors

Correspondence to Alexey Belyanin or Markus B. Raschke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Nanotechnology thanks Andrea Giugni, Themistoklis Sidiropoulos and other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–15, Supplementary Figs. 1–13 and Supplementary refs. 1–18.

Supplementary Movie 1

Supplementary video of Fig. 5.

Supplementary Movie 2

Supplementary video of Fig. 6.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, T., Kravtsov, V., Tokman, M. et al. Ultrafast coherent nonlinear nanooptics and nanoimaging of graphene. Nat. Nanotechnol. 14, 838–843 (2019). https://doi.org/10.1038/s41565-019-0515-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-019-0515-x

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research