Optical valley Hall effect for highly valley-coherent exciton-polaritons in an atomically thin semiconductor

Article metrics

Abstract

Spin–orbit coupling is a fundamental mechanism that connects the spin of a charge carrier with its momentum. In the optical domain, an analogous synthetic spin–orbit coupling is accessible by engineering optical anisotropies in photonic materials. Both yield the possibility of creating devices that directly harness spin and polarization as information carriers. Atomically thin transition metal dichalcogenides promise intrinsic spin-valley Hall features for free carriers, excitons and photons. Here we demonstrate spin- and valley-selective propagation of exciton-polaritons in a monolayer of MoSe2 that is strongly coupled to a microcavity photon mode. In a wire-like device we trace the flow and helicity of exciton-polaritons expanding along its channel. By exciting a coherent superposition of K and K′ tagged polaritons, we observe valley-selective expansion of the polariton cloud without either an external magnetic field or coherent Rayleigh scattering. The observed optical valley Hall effect occurs on a macroscopic scale, offering the potential for applications in spin-valley-locked photonic devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Sample design and characterization.
Fig. 2: Valley polarization and coherence of polaritons.
Fig. 3: Optical valley Hall effect.

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. 1.

    Xiao, D. et al. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

  2. 2.

    Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

  3. 3.

    Dyakonov, M. I. Spin Physics in Semiconductors (Springer, 2008).

  4. 4.

    Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494–498 (2012).

  5. 5.

    Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 3, 885–887 (2012).

  6. 6.

    Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 75–79 (2014).

  7. 7.

    Onga, M., Zhang, Y., Ideue, T. & Iwasa, Y. Exciton Hall effect in monolayer MoS2. Nat. Mater. 16, 1193–1198 (2017).

  8. 8.

    Wang, G. et al. Control of exciton valleycoherence in transition metal dichalcogenide monolayers. Phys. Rev. Lett. 117, 187401 (2016).

  9. 9.

    Ye, Z., Sun, D. & Heinz, T. F. Optical manipulation of valley pseudospin. Nat. Phys. 13, 26–30 (2017).

  10. 10.

    Schaibley, J. R., Yu, H., Yao, W. & Xu, X. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016).

  11. 11.

    Wang, G. et al. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 21001 (2018).

  12. 12.

    Glazov, M. M. et al. Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides. Phys. Rev. B 89, 201302 (2014).

  13. 13.

    Glazov, M. M. et al. Spin and valley dynamics of excitons in transition metal dichalcogenide monolayers. Phys. Stat. Solidi 252, 2349–2362 (2015).

  14. 14.

    Maialle, M. Z., Silva, E. & Sham, L. J. Exciton spin dynamics in quantum-wells. Phys. Rev. B 47, 15776 (1993).

  15. 15.

    Kioseoglou, G., Hanbicki, A. T., Currie, M., Friedman, A. L. & Gunlycke, D. Valley polarization and intervalley scattering in monolayer MoS2. Appl. Phys. Lett. 101, 221907 (2012).

  16. 16.

    Zhu, B., Zeng, H., Dai, J., Gong, Z. & Cui, X. Anomalously robust valley polarization and valley coherence in bilayer WS2. Proc. Natl Acad. Sci. USA 111, 11606–11611 (2014).

  17. 17.

    Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 8, 6–10 (2013).

  18. 18.

    Hanbicki, A. T. et al. Anomalous temperature-dependent spin-valley polarization in monolayer WS2. Sci. Rep. 6, 18885 (2016).

  19. 19.

    Wang, G. et al. Polarization and time-resolved photoluminescence spectroscopy of excitons in MoSe2 monolayers. Appl. Phys. Lett. 106, 112101 (2015).

  20. 20.

    Dufferwiel, S. et al. Valley-addressable polaritons in atomically thin semiconductors. Nat. Photon. 11, 497–501 (2017).

  21. 21.

    Seyler, K. L. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nat. Nanotechnol. 10, 1–5 (2015).

  22. 22.

    Dufferwiel, S. et al. Valley coherent exciton-polaritons in a monolayer semiconductor. Nat. Commun. 9, 4797 (2018).

  23. 23.

    Chen, Y., Cain, J. D., Stanev, T. K., Dravid, V. P. & Stern, N. P. Valley-polarized exciton-polaritons in a monolayer semiconductor. Nat. Photon. 11, 431–435 (2017).

  24. 24.

    Sun, Z. et al. Optical control of room-temperature valley polaritons. Nat. Photon. 11, 491–496 (2017).

  25. 25.

    Lundt, N. et al. Observation of macroscopic valley-polarized monolayer exciton-polaritons at room temperature. Phys. Rev. B 96, 241403 (2017).

  26. 26.

    Lundt, N. et al. Valley polarized relaxation and upconversion luminescence from Tamm-plasmon trion-polaritons with a MoSe2 monolayer. 2D Mater. 4, 25096 (2017).

  27. 27.

    Bleu, O., Solnyshkov, D. D. & Malpuech, G. Optical valley Hall effect based on transitional metal dichalcogenide cavity polaritons. Phys. Rev. B 96, 165432 (2017).

  28. 28.

    Barachati, F. et al. Interacting polariton fluids in a monolayer of tungsten disulfide. Nat. Nanotechnol. 13.10, 906 (2018).

  29. 29.

    Kulig, M. et al. Exciton diffusion and halo effects in monolayer semiconductors. Phys. Rev. Lett. 120, 207401 (2018).

  30. 30.

    Cadiz, F., Paget, D., Urbaszek, B. & Marie, X. Exciton diffusion in WSe2 monolayers embedded in a van der Waals heterostructure. Appl. Phys. Lett. 112, 152106 (2018).

  31. 31.

    Dyakonov, M. I. & Perel, V. I. Current-induced spin orientation of electrons in semiconductors. Phys. Lett. 35, 1–2 (1971).

  32. 32.

    Kavokin, A., Malpuech, G. & Glazov, M. Optical spin Hall effect. Phys. Rev. Lett. 95, 136601 (2005).

  33. 33.

    Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 11002 (2014).

  34. 34.

    Kulakovskii, V. D. et al. Bose–Einstein condensation of exciton polaritons in high Q planar microcavities with GaAs quantum wells. JETP Lett. 92, 595–599 (2010).

  35. 35.

    Glazov, M. M. et al. Intrinsic exciton-state mixing and nonlinear optical properties in transition metal dichalcogenide monolayers. Phys. Rev. B 95, 35311 (2017).

  36. 36.

    Wang, G. et al. Exciton states in monolayer MoSe2: impact on interband transitions. 2D Mater. 2, 45005 (2015).

  37. 37.

    Schmutzler, J. et al. Nonlinear spectroscopy of exciton-polaritons in a GaAs-based microcavity. Phys. Rev. B 90, 1–6 (2014).

  38. 38.

    Simon, H. J. & Bloembergen, N. Second-harmonic light generation in crystals with natural optical activity. Phys. Rev. 171, 1104–1114 (1968).

  39. 39.

    Jakubczyk, T. et al. Radiatively limited dephasing and exciton dynamics in MoSe2 monolayers revealed with four-wave mixing microscopy. Nano Lett. 16, 5333–5339 (2016).

  40. 40.

    Cadiz, F. et al. Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures. Phys. Rev. X 7, 21026 (2017).

  41. 41.

    Wang, G. et al. Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances. Phys. Rev. Lett. 114, 97403 (2015).

  42. 42.

    Leyder, C. et al. Observation of the optical spin Hall effect. Nat. Phys. 3, 628–631 (2007).

  43. 43.

    Maragkou, M. et al. Optical analogue of the spin Hall effect in a photonic cavity. Opt. Lett. 36, 1095–1097 (2011).

  44. 44.

    Baranowski, M. et al. Dark excitons and the elusive valley polarization in transition metal dichalcogenides. 2D Mater. 4, 025016 (2017).

  45. 45.

    Manni, F. et al. Spin-to-orbital angular momentum conversion in semiconductor microcavities. Phys. Rev. B 83, 241307 (2011).

  46. 46.

    Huang, S. et al. Topologically protected helical states in minimally twisted bilayer graphene. Phys. Rev. Lett. 121, 37702 (2018).

  47. 47.

    Klembt, S. et al. Exciton-polariton topological insulator. Nature 562, 552–556 (2018).

  48. 48.

    Schmidt., D. et al. Tracking dark excitons with exciton polaritons in semiconductor microcavities. Phys. Rev. Lett. 122, 047403 (2019).

  49. 49.

    Tassone, F. & Yamamoto, Y. Exciton-exciton scattering dynamics in a semiconductor microcavity and stimulated scattering into polaritons. Phys. Rev. B 59, 10830 (1999).

  50. 50.

    Shahnazaryan, V., Iorsh, I., Shelykh, I. A. & Kyriienko, O. Exciton-exciton interaction in transition-metal dichalcogenide monolayers. Phys. Rev. B 96, 115409 (2017).

Download references

Acknowledgements

C.S. acknowledges support from the ERC (Project unLiMIt-2D). The Würzburg group acknowledges support from the State of Bavaria. A.V.K. acknowledges support from Westlake University (Project No. 041020100118). A.V.K. acknowledges the St Petersburg State University for research grant ID 40847559. E.S. acknowledges support from the Grant of the President of the Russian Federation for state support of young Russian scientists No. MK-2839.2019.2 and RFBR Grant No. 17-52-10006. S.K. acknowledges support from the EU (Marie Curie Project TOPOPOLIS). Q.Y. and S.T. acknowledge funding from NSF DMR-1838443 and DMR-1552220. M.M.G. acknowledges partial support from RFBR Project No. 17-02-00383.

Author information

N.L. exfoliated, identified and transferred the monolayer and designed and fabricated the microcavity. Y.Q. and S.T. synthesized the bulk crystal. N.L., Ł.D., S.K., M.K. and P.S. performed experiments. N.L., S.K., M.K., J.B., M.R. and C.S. analysed and interpreted the experimental data, supported by all co-authors. E.S., M.M.G. and A.V.K. provided the theory. N.L. and C.S. wrote the manuscript, with input from all co-authors. C.S. and S.H. initiated the study and guided the work.

Correspondence to Christian Schneider.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lundt, N., Dusanowski, Ł., Sedov, E. et al. Optical valley Hall effect for highly valley-coherent exciton-polaritons in an atomically thin semiconductor. Nat. Nanotechnol. 14, 770–775 (2019) doi:10.1038/s41565-019-0492-0

Download citation