Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Colossal infrared and terahertz magneto-optical activity in a two-dimensional Dirac material


When two-dimensional electron gases (2DEGs) are exposed to a magnetic field, they resonantly absorb electromagnetic radiation via electronic transitions between Landau levels1. In 2DEGs with a Dirac spectrum, such as graphene, theory predicts an exceptionally high infrared magneto-absorption, even at zero doping2,3,4,5. However, the measured Landau-level magneto-optical effects in graphene have been much weaker than expected2,6,7,8,9,10,11,12 because of imperfections in the samples available for such experiments. Here, we measure magneto-transmission and Faraday rotation in high-mobility encapsulated monolayer graphene using a custom-designed set-up for magneto-infrared microspectroscopy. Our results show strongly enhanced magneto-optical activity in the infrared and terahertz ranges, characterized by absorption of light near to the 50% maximum allowed, 100% magnetic circular dichroism and high Faraday rotation. Considering that sizeable effects have been already observed at routinely achievable magnetic fields, our findings demonstrate the potential of magnetic tuning in 2D Dirac materials for long-wavelength optoelectronics and plasmonics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Interband Landau-level transitions in high-mobility encapsulated graphene.
Fig. 2: Analysis of the interband Landau-level transitions.
Fig. 3: Far-infrared/terahertz magneto-transmission in weakly doped graphene.
Fig. 4: Faraday rotation and magnetic circular dichroism due to polarization-dependent Pauli blocking.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

All relevant calculation codes are available from the corresponding author upon reasonable request.


  1. 1.

    Poulter, A. J. L. et al. Magneto infrared absorption in high electron density GaAs quantum wells. Phys. Rev. Lett. 86, 336–339 (2001).

    CAS  Article  Google Scholar 

  2. 2.

    Sadowski, M. L., Martinez, G., Potemski, M., Berger, C. & Heer, W. A. Landau level spectroscopy of ultrathin graphite layers. Phys. Rev. Lett. 97, 266405 (2006).

    CAS  Article  Google Scholar 

  3. 3.

    Shon, N. H. & Ando, T. Quantum transport in two-dimensional graphite system. J. Phys. Soc. Jpn 67, 2421–2429 (1998).

    CAS  Article  Google Scholar 

  4. 4.

    Gusynin, V. P., Sharapov, S. G. & Carbotte, J. P. Magneto-optical conductivity in graphene. J. Phys. Condens. Matter 19, 026222 (2007).

    Article  Google Scholar 

  5. 5.

    Abergel, D. S. L. & Falko, V. I. Optical and magneto-optical far-infrared properties of bilayer graphene. Phys. Rev. B 75, 155430 (2007).

    Article  Google Scholar 

  6. 6.

    Jiang, Z. et al. Infrared spectroscopy of Landau levels in graphene. Phys. Rev. Lett. 98, 197403 (2007).

    CAS  Article  Google Scholar 

  7. 7.

    Orlita, M. et al. Approaching the Dirac point in high-mobility multilayer epitaxial graphene. Phys. Rev. Lett. 101, 267601 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    Crassee, I. et al. Multicomponent magneto-optical conductivity of multilayer graphene on SiC. Phys. Rev. B 84, 035103 (2011).

    Article  Google Scholar 

  9. 9.

    Crassee, I. et al. Giant Faraday rotation in single- and multilayer graphene. Nat. Phys. 7, 48–51 (2011).

    CAS  Article  Google Scholar 

  10. 10.

    Orlita, M. et al. Carrier scattering from dynamical magnetoconductivity in quasineutral epitaxial graphene. Phys. Rev. Lett. 107, 216603 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    Maero, S. et al. Disorder-perturbed Landau levels in high-electron-mobility epitaxial graphene. Phys. Rev. B 90, 195433 (2014).

    Article  Google Scholar 

  12. 12.

    Chen, Z.-G. et al. Observation of an intrinsic bandgap and Landau level renormalization in graphene/boron-nitride heterostructures. Nat. Commun. 5, 4461 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    CAS  Article  Google Scholar 

  14. 14.

    Mayorov, S. M. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 2396–2399 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    Faugeras, C. et al. Landau-level spectroscopy of electron–electron interactions in graphene. Phys. Rev. Lett. 114, 126804 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    Russell, B. J., Zhou, B., Taniguchi, T., Watanabe, K. & Henriksen, E. A. Many-particle effects in the cyclotron resonance of encapsulated monolayer graphene. Phys. Rev. Lett. 120, 047401 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    Briskot, U., Dmitriev, I. A. & Mirlin, A. D. Quantum magneto-oscillations in the ac conductivity of disordered graphene. Phys. Rev. B 87, 195432 (2013).

    Article  Google Scholar 

  18. 18.

    Orlita, M. et al. Classical to quantum crossover of the cyclotron resonance in graphene: a study of the strength of intraband absorption. New J. Phys. 14, 095008 (2012).

    Article  Google Scholar 

  19. 19.

    Poumirol, J.-M. et al. Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene. Nat. Comm. 8, 14626 (2017).

    Article  Google Scholar 

  20. 20.

    Levallois, J., Nedoliuk, I. O., Crassee, I. & Kuzmenko, A. B. Magneto-optical Kramers–Kronig analysis. Rev. Sci. Instrum. 86, 033906 (2015).

    Article  Google Scholar 

  21. 21.

    Ikebe, Y. et al. Optical Hall effect in the integer quantum Hall regime. Phys. Rev. Lett. 104, 256802 (2010).

    CAS  Article  Google Scholar 

  22. 22.

    Ferreira, A. et al. Faraday effect in graphene enclosed in an optical cavity and the equation of motion method for the study of magneto-optical transport in solids. New J. Phys. 18, 113036 (2016).

    Article  Google Scholar 

  23. 23.

    Ubrig, N. et al. Fabry–Perot enhanced Faraday rotation in graphene. Opt. Express 21, 24736–24741 (2013).

    Article  Google Scholar 

  24. 24.

    Jang, M. S. et al. Tunable large resonant absorption in a midinfrared graphene Salisbury screen. Phys. Rev. B 90, 165409 (2014).

    Article  Google Scholar 

  25. 25.

    Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630–634 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    Tamagnone, M. et al. Magnetoplasmonic enhancement of Faraday rotation in patterned graphene metasurfaces. Phys. Rev. B 97, 241410(R) (2018).

    Article  Google Scholar 

  27. 27.

    Hunt, B. et al. Massive Dirac fermions and hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    Yu, G. L. et al. Hierarchy of Hofstadter states and replica quantum Hall ferromagnetism in graphene superlattices. Nat. Phys. 10, 525–529 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS  Article  Google Scholar 

  30. 30.

    Kawano, Y. Wide-band frequency-tunable terahertz and infrared detection with graphene. Nanotechnology 24, 214004 (2013).

    Article  Google Scholar 

  31. 31.

    Liang, G. et al. Integrated terahertz graphene modulator with 100% modulation depth. ACS Photonics 2, 1559–1566 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    Morimoto, T., Hatsugai, Y. & Aoki, H. Cyclotron radiation and emission in graphene. Phys. Rev. B 78, 073406 (2008).

    Article  Google Scholar 

  33. 33.

    Wendler, F. & Malic, M. Towards a tunable graphene-based Landau level laser in the terahertz regime. Sci. Rep. 5, 12646 (2015).

    CAS  Article  Google Scholar 

  34. 34.

    Wang, Y., Tokman, M. & Belyanin, A. Continuous-wave lasing between Landau levels in graphene. Phys. Rev. A 91, 033821 (2015).

    Article  Google Scholar 

Download references


This research was supported by the Swiss National Science Foundation and the EU Project Graphene Flagship.

Author information




A.B.K. conceived the experiment. I.O.N. and A.B.K. realized the experimental set-up and performed the experiments. S.H. and A.K.G. provided samples. I.O.N. and A.B.K. wrote the manuscript with input from S.H. and A.K.G. All authors discussed the results.

Corresponding author

Correspondence to Alexey B. Kuzmenko.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information:

Supplementary Figs. 1–10, Supplementary Table 1, Supplementary refs. 1–24.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nedoliuk, I.O., Hu, S., Geim, A.K. et al. Colossal infrared and terahertz magneto-optical activity in a two-dimensional Dirac material. Nat. Nanotechnol. 14, 756–761 (2019).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research