Rapid gate-based spin read-out in silicon using an on-chip resonator

An Author Correction to this article was published on 25 November 2019

This article has been updated

Abstract

Silicon spin qubits are one of the leading platforms for quantum computation1,2. As with any qubit implementation, a crucial requirement is the ability to measure individual quantum states rapidly and with high fidelity. Since the signal from a single electron spin is minute, the different spin states are converted to different charge states3,4. Charge detection, so far, has mostly relied on external electrometers5,6,7, which hinders scaling to two-dimensional spin qubit arrays2,8,9. Alternatively, gate-based dispersive read-out based on off-chip lumped element resonators has been demonstrated10,11,12,13, but integration times of 0.2–2 ms were required to achieve single-shot read-out14,15,16. Here, we connect an on-chip superconducting resonant circuit to two of the gates that confine electrons in a double quantum dot. Measurement of the power transmitted through a feedline coupled to the resonator probes the charge susceptibility, distinguishing whether or not an electron can oscillate between the dots in response to the probe power. With this approach, we achieve a signal-to-noise ratio of about six within an integration time of only 1 μs. Using Pauli’s exclusion principle for spin-to-charge conversion, we demonstrate single-shot read-out of a two-electron spin state with an average fidelity of >98% in 6 μs. This result may form the basis of frequency-multiplexed read-out in dense spin qubit systems without external electrometers, therefore simplifying the system architecture.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Device schematics.
Fig. 2: Characterization of the charge sensitivity.
Fig. 3: Single-shot spin read-out and fidelity analysis.

Data availability

The data reported in this paper are archived at https://doi.org/10.4121/uuid:8df1a6fa-9230-400f-a790-1b7714b1aad5.

Change history

  • 25 November 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    Zwanenburg, F. A. et al. Silicon quantum electronics. Rev. Mod. Phys. 85, 961 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    Vandersypen, L. M. K. et al. Interfacing spin qubits in quantum dots and donors—hot, dense and coherent. npj Quantum Inf. 3, 34 (2017).

    Article  Google Scholar 

  3. 3.

    Ono, K., Austing, D. G., Tokura, Y. & Tarucha, S. Current rectification by Pauli exclusion in a weakly coupled double quantum dot system. Science 297, 5585 (2002).

    Article  Google Scholar 

  4. 4.

    Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004).

    Article  Google Scholar 

  5. 5.

    Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    Field, M. et al. Measurements of Coulomb blockade with a noninvasive voltage probe. Phys. Rev. Lett. 70, 1311–1314 (1993).

    CAS  Article  Google Scholar 

  7. 7.

    Barthel, C. et al. Fast sensing of double-dot charge arrangement and spin state with a radio-frequency sensor quantum dot. Phys. Rev. B 81, 161308 (2010).

    Article  Google Scholar 

  8. 8.

    Li, R. et al. A crossbar network for silicon quantum dot qubits. Sci. Adv. 4, eaar3960 (2018).

    Article  Google Scholar 

  9. 9.

    Veldhorst, M., Eenink, H. G. J., Yang, C. H. & Dzurak, A. S. Silicon CMOS architecture for a spin-based quantum computer. Nat. Commun. 8, 1766 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    Colless, J. I. et al. Dispersive readout of a few-electron double quantum dot with fast rf gate sensors. Phys. Rev. Lett. 110, 046805 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    Betz, A. C. et al. Dispersively detected Pauli spin-blockade in a silicon nanowire field-effect transistor. Nano Lett. 15, 4622–4627 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    House, M. G. et al. Radio frequency measurements of tunnel couplings and singlet–triplet spin states in Si:P quantum dots. Nat. Commun. 6, 8848 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    Crippa, A. et al. Gate-reflectometry dispersive readout of a spin qubit in silicon. Preprint at https://arxiv.org/abs/1811.04414 (2018).

  14. 14.

    Pakkiam, P. et al. Single-shot single-gate rf spin readout in silicon. Phys. Rev. X 8, 041032 (2018).

    Google Scholar 

  15. 15.

    West, A. et al. Gate-based single-shot readout of spins in silicon. Nat. Nanotechnol. 14, 437–441 (2019).

    CAS  Article  Google Scholar 

  16. 16.

    Urdampilleta, M. et al. Gate-based high fidelity spin read-out in a CMOS device. Preprint at https://arxiv.org/abs/1809.04584 (2018).

  17. 17.

    Gonzalez-Zalba, M. F., Barraud, S., Ferguson, A. J. & Betz, A. C. Probing the limits of gate-based charge sensing. Nat. Commun. 6, 6084 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Rossi, A., Zhao, R., Dzurak, A. S. & Gonzalez-Zalba, M. F. Dispersive readout of a silicon quantum dot with an accumulation-mode gate sensor. Appl. Phys. Lett. 110, 212101 (2017).

    Article  Google Scholar 

  19. 19.

    de Jong, D. et al. Rapid detection of coherent tunneling in an InAs nanowire quantum dot through dispersive gate sensing. Phys. Rev. Appl. 11, 044061 (2019).

    Article  Google Scholar 

  20. 20.

    Samkharadze, N. et al. Strong spin–photon coupling in silicon. Science 359, 1123–1127 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    Samkharadze, N. et al. High-kinetic-inductance superconducting nanowire resonators for circuit QED in a magnetic field. Phys. Rev. Appl. 5, 044004 (2016).

    Article  Google Scholar 

  22. 22.

    Cottet, A., Mora, C. & Kontos, T. Mesoscopic admittance of a double quantum dot. Phys. Rev. B 83, 121311 (2011).

    Article  Google Scholar 

  23. 23.

    Petersson, K. D. et al. Circuit quantum electrodynamics with a spin qubit. Nature 490, 380–383 (2012).

    Article  Google Scholar 

  24. 24.

    Frey, T. et al. Dipole coupling of a double quantum dot to a microwave resonator. Phys. Rev. Lett. 108, 046807 (2012).

    CAS  Article  Google Scholar 

  25. 25.

    Chorley, S. J. et al. Measuring the complex admittance of a carbon nanotube double quantum dot. Phys. Rev. Lett. 108, 036802 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    Landig, A. J. et al. Microwave cavity detected spin blockade in a few electron double quantum dot. Preprint at https://arxiv.org/abs/1811.03907 (2018).

  27. 27.

    Schuster, D. I. et al. AC Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. Phys. Rev. Lett. 94, 123602 (2005).

    CAS  Article  Google Scholar 

  28. 28.

    Mizuta, R., Otxoa, R. M., Betz, A. C. & Gonzalez-Zalba, M. F. Quantum and tunneling capacitance in charge and spin qubits. Phys. Rev. B 95, 045414 (2017).

    Article  Google Scholar 

  29. 29.

    Stehlik, J. et al. Fast charge sensing of a cavity-coupled double quantum dot using a Josephson parametric amplifier. Phys. Rev. Appl. 4, 014018 (2015).

    Article  Google Scholar 

  30. 30.

    Mi, X. et al. A coherent spin–photon interface in silicon. Nature 555, 599–603 (2018).

    Article  Google Scholar 

  31. 31.

    Bienfait, A. et al. Controlling spin relaxation with a cavity. Nature 531, 74–77 (2016).

    Article  Google Scholar 

  32. 32.

    Barthel, C., Reilly, D. J., Marcus, C. M., Hanson, M. P. & Gossard, A. C. Rapid single-shot measurement of a singlet–triplet qubit. Phys. Rev. Lett. 103, 160503 (2009).

    CAS  Article  Google Scholar 

  33. 33.

    Veldhorst, M. et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 9, 981–985 (2014).

    Article  Google Scholar 

  34. 34.

    Yoneda, J. et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nat. Nanotechnol. 13, 102–106 (2018).

    Article  Google Scholar 

  35. 35.

    Khalil, M. S., Stoutimore, M. J. A., Wellstood, F. C. & Osborn, K. D. An analysis method for asymmetric resonator transmission applied to superconducting devices. J. Appl. Phys. 111, 054510 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank T.F. Watson, J.P. Dehollain, P. Harvey-Collard, U.C. Mendes, B. Hensen and other members of the spin qubit team at QuTech for useful discussions, L.P. Kouwenhoven and his team for access to NbTiN films, and P. Eendebak and L. Blom for software support. This research was undertaken thanks in part to funding from the European Research Council (ERC Synergy Quantum Computer Lab), the Netherlands Organisation for Scientific Research (NWO/OCW) as part of the Frontiers of Nanoscience (NanoFront) programme and Intel Corporation.

Author information

Affiliations

Authors

Contributions

G.Z., N.S. and L.M.K.V. conceived and planned the experiments. G.Z. and M.L.N. carried out the experiments. A.S. grew the heterostructure with G.S.’s supervision. N.S. designed and fabricated the device. D.B. and N.K. contributed to sample fabrication. G.Z., M.L.N. and L.M.K.V. analysed the results. G.Z. and L.M.K.V. wrote the manuscript with input from all co-authors. L.M.K.V. supervised the project.

Corresponding author

Correspondence to Lieven M. K. Vandersypen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Nanotechnology thanks Hongwen Jiang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–2

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, G., Samkharadze, N., Noordam, M.L. et al. Rapid gate-based spin read-out in silicon using an on-chip resonator. Nat. Nanotechnol. 14, 742–746 (2019). https://doi.org/10.1038/s41565-019-0488-9

Download citation

Further reading

Search

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research