Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An atlas of nano-enabled neural interfaces

Abstract

Advances in microscopy and molecular strategies have allowed researchers to gain insight into the intricate organization of the mammalian brain and the roles that neurons play in processing information. Despite vast progress, therapeutic strategies for neurological disorders remain limited, owing to a lack of biomaterials for sensing and modulating neuronal signalling in vivo. Therefore, there is a pressing need for developing material-based tools that can form seamless biointerfaces and interrogate the brain with unprecedented resolution. In this Review, we discuss important considerations in material design and implementation, highlight recent breakthroughs in neural sensing and modulation, and propose future directions in neurotechnology research. Our goal is to create an atlas for nano-enabled neural interfaces and to demonstrate how emerging nanotechnologies can interrogate neural systems spanning multiple biological length scales.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Nanoscale materials and devices can offer new opportunities in neural interfaces.
Fig. 2: Naturally occurring and cultured neural systems provide plenty of room for nanoscale probing.
Fig. 3: Nanoscale toolbox for neural interfaces.
Fig. 4: Nano-enabled subcellular neural interfaces.
Fig. 5: Nano-enabled cellular and tissue-scale neural interfaces.

References

  1. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    CAS  Google Scholar 

  2. Benabid, A. L. Deep brain stimulation for Parkinson's disease. Curr. Opin. Neurobiol. 13, 696–706 (2003).

    CAS  Google Scholar 

  3. Terem, I. et al. Revealing sub-voxel motions of brain tissue using phase-based amplified MRI (aMRI). Magn. Reson. Med. 80, 2549–2559 (2018).

    CAS  Google Scholar 

  4. Salatino, J. W., Ludwig, K. A., Kozai, T. D. Y. & Purcell, E. K. Glial responses to implanted electrodes in the brain. Nat. Biomed. Eng. 1, 862–877 (2017).

    CAS  Google Scholar 

  5. Insel, T. R., Landis, S. C. & Collins, F. S. Research priorities. The NIH BRAIN Initiative. Science 340, 687–688 (2013).

    CAS  Google Scholar 

  6. Amunts, K. et al. The Human Brain Project: creating a European research infrastructure to decode the human brain. Neuron 92, 574–581 (2016).

    CAS  Google Scholar 

  7. Poo, M. M. et al. China Brain Project: basic neuroscience, brain diseases, and brain-inspired computing. Neuron 92, 591–596 (2016).

    CAS  Google Scholar 

  8. Lacour, S. P., Courtine, G. & Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 1, 16063 (2016).

    CAS  Google Scholar 

  9. Yang, X. et al. Bioinspired neuron-like electronics. Nat. Mater. 18, 510–517 (2019).

    CAS  Google Scholar 

  10. Zhou, T. et al. Syringe-injectable mesh electronics integrate seamlessly with minimal chronic immune response in the brain. Proc. Natl Acad. Sci. USA 114, 5894–5899 (2017).

    CAS  Google Scholar 

  11. Phillips, R. & Quake, S. R. The biological frontier of physics. Phys. Today 59, 38–43 (2006).

    CAS  Google Scholar 

  12. Zhang, X. et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature 566, 368–372 (2019).

    Google Scholar 

  13. Shi, Z., Graber, Z. T., Baumgart, T., Stone, H. A. & Cohen, A. E. Cell membranes resist flow. Cell 175, 1769–1779 (2018).

    CAS  Google Scholar 

  14. Huberman, A. D., Murray, K. D., Warland, D. K., Feldheim, D. A. & Chapman, B. Ephrin-As mediate targeting of eye-specific projections to the lateral geniculate nucleus. Nat. Neurosci. 8, 1013–1021 (2005).

    CAS  Google Scholar 

  15. Dhande, O. S. et al. Development of single retinofugal axon arbors in normal and beta2 knock-out mice. J. Neurosci 31, 3384–3399 (2011).

    CAS  Google Scholar 

  16. Hoon, M., Okawa, H., Della Santina, L. & Wong, R. O. Functional architecture of the retina: development and disease. Prog. Retin. Eye Res. 42, 44–84 (2014).

    CAS  Google Scholar 

  17. Choi, C. et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 8, 1664 (2017).

    Google Scholar 

  18. Tang, J. et al. Nanowire arrays restore vision in blind mice. Nat. Commun. 9, 786 (2018).

    Google Scholar 

  19. Dai, X., Hong, G., Gao, T. & Lieber, C. M. Mesh nanoelectronics: seamless integration of electronics with tissues. Acc. Chem. Res. 51, 309–318 (2018).

    CAS  Google Scholar 

  20. Ma, Y. et al. Mammalian near-infrared image vision through injectable and self-powered retinal nanoantennae. Cell 177, 243–255 (2019).

    CAS  Google Scholar 

  21. Millet, L. J. & Gillette, M. U. Over a century of neuron culture: from the hanging drop to microfluidic devices. Yale J. Biol. Med. 85, 501–521 (2012).

    Google Scholar 

  22. Seabrook, T. A., Burbridge, T. J., Crair, M. C. & Huberman, A. D. Architecture, function, and assembly of the mouse visual system. Annu. Rev. Neurosci. 40, 499–538 (2017).

    CAS  Google Scholar 

  23. Park, J. W., Vahidi, B., Taylor, A. M., Rhee, S. W. & Jeon, N. L. Microfluidic culture platform for neuroscience research. Nat. Protoc. 1, 2128–2136 (2006).

    CAS  Google Scholar 

  24. Park, J., Koito, H., Li, J. & Han, A. Microfluidic compartmentalized co-culture platform for CNS axon myelination research. Biomed. Microdevices 11, 1145–1153 (2009).

    CAS  Google Scholar 

  25. Quadrato, G. et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545, 48–53 (2017).

    CAS  Google Scholar 

  26. Sloan, S. A., Andersen, J., Pasca, A. M., Birey, F. & Pasca, S. P. Generation and assembly of human brain region-specific three-dimensional cultures. Nat. Protoc. 13, 2062–2085 (2018).

    CAS  Google Scholar 

  27. Pasca, A. M. et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods 12, 671–678 (2015).

    CAS  Google Scholar 

  28. Birey, F. et al. Assembly of functionally integrated human forebrain spheroids. Nature 545, 54–59 (2017).

    CAS  Google Scholar 

  29. Kato-Negishi, M., Morimoto, Y., Onoe, H. & Takeuchi, S. Millimeter-sized neural building blocks for 3D heterogeneous neural network assembly. Adv. Healthc. Mater. 2, 1564–1570 (2013).

    CAS  Google Scholar 

  30. Eiraku, M. et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472, 51–56 (2011).

    CAS  Google Scholar 

  31. Lancaster, M. A. et al. Guided self-organization and cortical plate formation in human brain organoids. Nat. Biotechnol. 35, 659–666 (2017).

    CAS  Google Scholar 

  32. Jiang, Y. W. & Tian, B. Z. Inorganic semiconductor biointerfaces. Nat. Rev. Mater. 3, 473–490 (2018).

    Google Scholar 

  33. Fu, T. M. et al. Sub-10-nm intracellular bioelectronic probes from nanowire–nanotube heterostructures. Proc. Natl Acad. Sci. USA 111, 1259–1264 (2014).

    CAS  Google Scholar 

  34. Mirza, M. M. et al. One dimensional transport in silicon nanowire junction-less field effect transistors. Sci. Rep. 7, 3004 (2017).

    Google Scholar 

  35. Colinge, J.-P. et al. Nanowire transistors without junctions. Nat. Nanotechnol. 5, 225–229 (2010).

    CAS  Google Scholar 

  36. Tian, B. et al. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329, 830–834 (2010).

    CAS  Google Scholar 

  37. Zhao, Y. et al. Shape-controlled deterministic assembly of nanowires. Nano Lett. 16, 2644–2650 (2016).

    CAS  Google Scholar 

  38. Duan, X. et al. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 7, 174–179 (2011).

    Google Scholar 

  39. Gao, R. X. et al. Outside looking in: nanotube transistor intracellular sensors. Nano Lett. 12, 3329–3333 (2012).

    CAS  Google Scholar 

  40. Cohen-Karni, T. et al. Synthetically encoded ultrashort-channel nanowire transistors for fast, pointlike cellular signal detection. Nano Lett 12, 2639–2644 (2012).

    CAS  Google Scholar 

  41. Kang, S. K. et al. Bioresorbable silicon electronic sensors for the brain. Nature 530, 71–76 (2016).

    CAS  Google Scholar 

  42. Jiang, Y. et al. Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces. Nat. Mater. 15, 1023–1030 (2016).

    CAS  Google Scholar 

  43. Park, D. W. et al. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nat. Commun. 5, 5258 (2014).

    CAS  Google Scholar 

  44. Kuzum, D. et al. Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Nat. Commun. 5, 5259 (2014).

    CAS  Google Scholar 

  45. Tian, B. et al. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 11, 986–994 (2012).

    CAS  Google Scholar 

  46. Liu, J. et al. Syringe-injectable electronics. Nat. Nanotechnol. 10, 629–636 (2015).

    CAS  Google Scholar 

  47. Xie, C. et al. Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat. Mater. 14, 1286–1292 (2015).

    CAS  Google Scholar 

  48. Xu, J. et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355, 59–64 (2017).

    CAS  Google Scholar 

  49. Fu, T. M., Hong, G., Viveros, R. D., Zhou, T. & Lieber, C. M. Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology. Proc. Natl Acad. Sci. USA 114, E10046–E10055 (2017).

    CAS  Google Scholar 

  50. Koo, J. et al. Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nat. Med. 24, 1830–1836 (2018).

    CAS  Google Scholar 

  51. Lee, S. et al. Ultrasoft electronics to monitor dynamically pulsing cardiomyocytes. Nat. Nanotechnol. 14, 156–160 (2019).

    CAS  Google Scholar 

  52. Miyamoto, A. et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12, 907–913 (2017).

    CAS  Google Scholar 

  53. Hai, A., Shappir, J. & Spira, M. E. In-cell recordings by extracellular microelectrodes. Nat. Methods 7, 200–202 (2010).

    CAS  Google Scholar 

  54. Hai, A. & Spira, M. E. On-chip electroporation, membrane repair dynamics and transient in-cell recordings by arrays of gold mushroom-shaped microelectrodes. Lab Chip 12, 2865–2873 (2012).

    CAS  Google Scholar 

  55. Xie, C., Lin, Z., Hanson, L., Cui, Y. & Cui, B. Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotechnol. 7, 185–190 (2012).

    CAS  Google Scholar 

  56. Lin, Z. C., Xie, C., Osakada, Y., Cui, Y. & Cui, B. Iridium oxide nanotube electrodes for sensitive and prolonged intracellular measurement of action potentials. Nat. Commun. 5, 3206 (2014).

    Google Scholar 

  57. Robinson, J. T. et al. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 7, 180–184 (2012).

    CAS  Google Scholar 

  58. Dipalo, M. et al. Intracellular and extracellular recording of spontaneous action potentials in mammalian neurons and cardiac cells with 3D plasmonic nanoelectrodes. Nano Lett. 17, 3932–3939 (2017).

    CAS  Google Scholar 

  59. Dipalo, M. et al. Plasmonic meta-electrodes allow intracellular recordings at network level on high-density CMOS-multi-electrode arrays. Nat. Nanotechnol. 13, 965–971 (2018).

    CAS  Google Scholar 

  60. Luan, L. et al. Ultraflexible nanoelectronic probes form reliable, glial scar-free neural integration. Science Advances 3, e1601966 (2017).

    Google Scholar 

  61. Gonzales, D. L. et al. Scalable electrophysiology in intact small animals with nanoscale suspended electrode arrays. Nat. Nanotechnol. 12, 684–691 (2017).

    CAS  Google Scholar 

  62. Saha, S., Prakash, V., Halder, S., Chakraborty, K. & Krishnan, Y. A pH-independent DNA nanodevice for quantifying chloride transport in organelles of living cells. Nat. Nanotechnol. 10, 645–651 (2015).

    CAS  Google Scholar 

  63. Thubagere, A. J. et al. A cargo-sorting DNA robot. Science 357, eaan6558 (2017).

    Google Scholar 

  64. Bhatia, D. et al. Quantum dot-loaded monofunctionalized DNA icosahedra for single-particle tracking of endocytic pathways. Nat. Nanotechnol. 11, 1112–1119 (2016).

    CAS  Google Scholar 

  65. Prakash, V., Saha, S., Chakraborty, K. & Krishnan, Y. Rational design of a quantitative, pH-insensitive, nucleic acid based fluorescent chloride reporter. Chem. Sci. 7, 1946–1953 (2016).

    CAS  Google Scholar 

  66. Leung, K., Chakraborty, K., Saminathan, A. & Krishnan, Y. A DNA nanomachine chemically resolves lysosomes in live cells. Nat. Nanotechnol. 14, 176–183 (2019).

    CAS  Google Scholar 

  67. Veetil, A. T. et al. Cell-targetable DNA nanocapsules for spatiotemporal release of caged bioactive small molecules. Nat. Nanotechnol. 12, 1183–1189 (2017).

    CAS  Google Scholar 

  68. Edelbrock, A. N. et al. Supramolecular nanostructure activates TrkB receptor signaling of neuronal cells by mimicking brain-derived neurotrophic factor. Nano Lett. 18, 6237–6247 (2018).

    CAS  Google Scholar 

  69. Alvarez-Erviti, L. et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29, 341–345 (2011).

    CAS  Google Scholar 

  70. Shapiro, M. G. et al. Biogenic gas nanostructures as ultrasonic molecular reporters. Nat. Nanotechnol. 9, 311–316 (2014).

    CAS  Google Scholar 

  71. Sytnyk, M. et al. Cellular interfaces with hydrogen-bonded organic semiconductor hierarchical nanocrystals. Nat. Commun. 8, 91 (2017).

    Google Scholar 

  72. Tortiglione, C. et al. Semiconducting polymers are light nanotransducers in eyeless animals. Sci. Adv. 3, e1601699 (2017).

    Google Scholar 

  73. Berna, J. et al. Macroscopic transport by synthetic molecular machines. Nat. Mater. 4, 704–710 (2005).

    CAS  Google Scholar 

  74. Garcia-Lopez, V. et al. Molecular machines open cell membranes. Nature 548, 567–572 (2017).

    CAS  Google Scholar 

  75. Carvalho-de-Souza, J. L., Pinto, B. I., Pepperberg, D. R. & Bezanilla, F. Optocapacitive generation of action potentials by microsecond laser pulses ofnanojoule energy. Biophys. J. 114, 283–288 (2018).

    CAS  Google Scholar 

  76. Kubanek, J., Shukla, P., Das, A., Baccus, S. A. & Goodman, M. B. Ultrasound elicits behavioral responses through mechanical effects on neurons and ion channels in a simple nervous system. J. Neurosci. 38, 3081–3091 (2018).

    CAS  Google Scholar 

  77. Hallett, M. Transcranial magnetic stimulation and the human brain. Nature 406, 147–150 (2000).

    CAS  Google Scholar 

  78. Carvalho-de-Souza, J. L. et al. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron 86, 207–217 (2015).

    CAS  Google Scholar 

  79. Fang, Y. et al. Texturing silicon nanowires for highly localized optical modulation of cellular dynamics. Nano Lett. 18, 4487–4492 (2018).

    CAS  Google Scholar 

  80. Parameswaran, R. et al. Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires. Nat. Nanotechnol. 13, 260–266 (2018).

    CAS  Google Scholar 

  81. Jiang, Y. W. et al. Rational design of silicon structures for optically controlled multiscale biointerfaces. Nat. Biomed. Eng. 2, 508–521 (2018).

    CAS  Google Scholar 

  82. Pliss, A. et al. Subcellular optogenetics enacted by targeted nanotransformers of near-infrared light. ACS Photonics 4, 806–814 (2017).

    CAS  Google Scholar 

  83. Haziza, S. et al. Fluorescent nanodiamond tracking reveals intraneuronal transport abnormalities induced by brain-disease-related genetic risk factors. Nat. Nanotechnol. 12, 322–328 (2017).

    CAS  Google Scholar 

  84. Huang, H., Delikanli, S., Zeng, H., Ferkey, D. M. & Pralle, A. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat. Nanotechnol. 5, 602–606 (2010).

    CAS  Google Scholar 

  85. Tay, A. & Di Carlo, D. Magnetic nanoparticle-based mechanical stimulation for restoration of mechano-sensitive ion channel equilibrium in neural networks. Nano Lett. 17, 886–892 (2017).

    CAS  Google Scholar 

  86. Tay, A., Kunze, A., Murray, C. & Di Carlo, D. Induction of calcium influx in cortical neural networks by nanomagnetic forces. ACS Nano 10, 2331–2341 (2016).

    CAS  Google Scholar 

  87. Roet, M. et al. Progress in neuromodulation of the brain: a role for magnetic nanoparticles? Prog. Neurobiol. 177, 1–14 (2019).

    CAS  Google Scholar 

  88. Efros, A. L. et al. Evaluating the potential of using quantum dots for monitoring electrical signals in neurons. Nat. Nanotechnol. 13, 278–288 (2018).

    CAS  Google Scholar 

  89. Peterka, D. S., Takahashi, H. & Yuste, R. Imaging voltage in neurons. Neuron 69, 9–21 (2011).

    CAS  Google Scholar 

  90. Marshall, J. D. & Schnitzer, M. J. Optical strategies for sensing neuronal voltage using quantum dots and other semiconductor nanocrystals. ACS Nano 7, 4601–4609 (2013).

    CAS  Google Scholar 

  91. Bonnaud, C. et al. Insertion of nanoparticle clusters into vesicle bilayers. ACS Nano 8, 3451–3460 (2014).

    CAS  Google Scholar 

  92. Lee, J. H., Zhang, A., You, S. S. & Lieber, C. M. Spontaneous internalization of cell penetrating peptide-modified nanowires into primary neurons. Nano Lett. 16, 1509–1513 (2016).

    CAS  Google Scholar 

  93. Xu, T., Gao, W., Xu, L. P., Zhang, X. & Wang, S. Fuel-free synthetic micro-/nanomachines. Adv. Mater. 29, 1603250 (2017).

    Google Scholar 

  94. Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? Nat. Rev. Drug Discov. 5, 993–996 (2006).

    CAS  Google Scholar 

  95. Kreuter, J. Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv. Drug Deliv. Rev. 71, 2–14 (2014).

    CAS  Google Scholar 

  96. Yoo, S., Hong, S., Choi, Y., Park, J. H. & Nam, Y. Photothermal inhibition of neural activity with near-infrared-sensitive nanotransducers. ACS Nano 8, 8040–8049 (2014).

    CAS  Google Scholar 

  97. Zhao, W. et al. Nanoscale manipulation of membrane curvature for probing endocytosis in live cells. Nat. Nanotechnol. 12, 750–756 (2017).

    CAS  Google Scholar 

  98. Tunuguntla, R. H. et al. Bioelectronic light-gated transistors with biologically tunable performance. Adv. Mater. 27, 831–836 (2015).

    CAS  Google Scholar 

  99. Chen, S. et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 359, 679–683 (2018).

    CAS  Google Scholar 

  100. Zimmerman, J. F. et al. Cellular uptake and dynamics of unlabeled freestanding silicon nanowires. Sci. Adv. 2, e1601039 (2016).

    Google Scholar 

  101. Gu, Y. et al. Rotational dynamics of cargos at pauses during axonal transport. Nat. Commun. 3, 1030 (2012).

    Google Scholar 

  102. Kaplan, L., Ierokomos, A., Chowdary, P., Bryant, Z. & Cui, B. X. Rotation of endosomes demonstrates coordination of molecular motors during axonal transport. Sci. Adv. 4, e1602170 (2018).

    Google Scholar 

  103. Goel, A. & Vogel, V. Harnessing biological motors to engineer systems for nanoscale transport and assembly. Nat. Nanotechnol. 3, 465–475 (2008).

    CAS  Google Scholar 

  104. Johannsmeier, S. et al. Gold nanoparticle-mediated laser stimulation induces a complex stress response in neuronal cells. Sci. Rep. 8, 6533 (2018).

    Google Scholar 

  105. Narayanaswamy, N. et al. A pH-correctable, DNA-based fluorescent reporter for organellar calcium. Nat. Methods 16, 95–102 (2019).

    CAS  Google Scholar 

  106. Chen, F., Tillberg, P. W. & Boyden, E. S. Optical imaging. Expansion microscopy. Science 347, 543–548 (2015).

    CAS  Google Scholar 

  107. Chung, K. & Deisseroth, K. CLARITY for mapping the nervous system. Nat. Methods 10, 508–513 (2013).

    CAS  Google Scholar 

  108. Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

    CAS  Google Scholar 

  109. Denk, W. & Horstmann, H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2, e329 (2004).

    Google Scholar 

  110. Zheng, Z. et al. A complete electron microscopy volume of the brain of adult Drosophila melanogaster. Cell 174, 730–743 (2018).

    CAS  Google Scholar 

  111. Martersteck, E. M. et al. Diverse central projection patterns of retinal ganglion cells. Cell Rep. 18, 2058–2072 (2017).

    CAS  Google Scholar 

  112. Gao, R. et al. Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Science 363, eaau8302 (2019).

    Google Scholar 

  113. Beaulieu-Laroche, L. & Harnett, M. T. Dendritic spines prevent synaptic voltage clamp. Neuron 97, 75–82 (2018).

    CAS  Google Scholar 

  114. Jayant, K. et al. Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes. Nat. Nanotechnol. 12, 335–342 (2017).

    CAS  Google Scholar 

  115. Patolsky, F. et al. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313, 1100–1104 (2006).

    CAS  Google Scholar 

  116. Steketee, M. B. et al. Nanoparticle-mediated signaling endosome localization regulates growth cone motility and neurite growth. Proc. Natl Acad. Sci. USA 108, 19042–19047 (2011).

    CAS  Google Scholar 

  117. Gautam, V. et al. Engineering highly interconnected neuronal networks on nanowire scaffolds. Nano Lett. 17, 3369–3375 (2017).

    CAS  Google Scholar 

  118. Allen, N. J. & Lyons, D. A. Glia as architects of central nervous system formation and function. Science 362, 181–185 (2018).

    CAS  Google Scholar 

  119. Deemyad, T., Luthi, J. & Spruston, N. Astrocytes integrate and drive action potential firing in inhibitory subnetworks. Nat. Commun. 9, 4336 (2018).

    Google Scholar 

  120. Kandel, E. R. Principles of Neural Science, 5th edn (McGraw-Hill, 2013).

  121. Nave, K. A. Myelination and support of axonal integrity by glia. Nature 468, 244–252 (2010).

    CAS  Google Scholar 

  122. Lee, S. et al. A culture system to study oligodendrocyte myelination processes using engineered nanofibers. Nat. Methods 9, 917–922 (2012).

    CAS  Google Scholar 

  123. Lee, S., Chong, S. Y. C., Tuck, S. J., Corey, J. M. & Chan, J. R. A rapid and reproducible assay for modeling myelination by oligodendrocytes using engineered nanofibers. Nat. Protoc. 8, 771–782 (2013).

    Google Scholar 

  124. Fields, R. D. A new mechanism of nervous system plasticity: activity-dependent myelination. Nat. Rev. Neurosci. 16, 756–767 (2015).

    CAS  Google Scholar 

  125. Chen, Y. & Liu, L. H. Modern methods for delivery of drugs across the blood–brain barrier. Adv. Drug Deliv. Rev. 64, 640–665 (2012).

    CAS  Google Scholar 

  126. Yang, T. Z. et al. Exosome delivered anticancer drugs across the blood–brain barrier for brain cancer therapy in Danio rerio. Pharm. Res. 32, 2003–2014 (2015).

    CAS  Google Scholar 

  127. Bonakdar, M., Wasson, E. M., Lee, Y. W. & Davalos, R. V. Electroporation of brain endothelial cells on chip toward permeabilizing the blood–brain barrier. Biophys. J. 110, 503–513 (2016).

    CAS  Google Scholar 

  128. Bonakdar, M., Graybill, P. M. & Davalos, R. V. A microfluidic model of the blood–brain barrier to study permeabilization by pulsed electric fields. RSC Adv. 7, 42811–42818 (2017).

    CAS  Google Scholar 

  129. Mammadov, B., Mammadov, R., Guler, M. O. & Tekinay, A. B. Cooperative effect of heparan sulfate and laminin mimetic peptide nanofibers on the promotion of neurite outgrowth. Acta Biomater. 8, 2077–2086 (2012).

    CAS  Google Scholar 

  130. Tian, B. Z. et al. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 11, 986–994 (2012).

    CAS  Google Scholar 

  131. Parameswaran, R. et al. Optical stimulation of cardiac cells with a polymer-supported silicon nanowire matrix. Proc. Natl Acad. Sci. 116, 413–421 (2019).

    CAS  Google Scholar 

  132. Hong, G. et al. A method for single-neuron chronic recording from the retina in awake mice. Science 360, 1447–1451 (2018).

    CAS  Google Scholar 

  133. Munshi, R. et al. Magnetothermal genetic deep brain stimulation of motor behaviors in awake, freely moving mice. Elife 6, e27069 (2017).

    Google Scholar 

  134. Chen, R., Romero, G., Christiansen, M. G., Mohr, A. & Anikeeva, P. Wireless magnetothermal deep brain stimulation. Science 347, 1477–1480 (2015).

    CAS  Google Scholar 

  135. Lu, G. J. et al. Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures. Nat. Mater. 17, 456–463 (2018).

    CAS  Google Scholar 

  136. Seo, D. et al. Wireless recording in the peripheral nervous system with ultrasonic neural dust. Neuron 91, 529–539 (2016).

    CAS  Google Scholar 

  137. Tian, B. Z. & Lieber, C. M. Nanowired bioelectric interfaces. Chem. Rev. https://doi.org/10.1021/acs.chemrev.8b00795 (2019).

  138. Herisson, F. et al. Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. Nat. Neurosci. 21, 1209–1217 (2018).

    CAS  Google Scholar 

  139. Selberg, J., Gomez, M. & Rolandi, M. The potential for convergence between synthetic biology and bioelectronics. Cell Syst. 7, 231–244 (2018).

    CAS  Google Scholar 

  140. Milo, R. & Phillips, R. Cell Biology by the Numbers, 21, 39, 159, 198, 253 (Garland Science, 2016).

  141. Wang, B., Grill, W. M. & Peterchev, A. V. Coupling magnetically induced electric fields to neurons: longitudinal and transverse activation. Biophys. J. 115, 95–107 (2018).

    CAS  Google Scholar 

  142. Phillips, M. J. & Voeltz, G. K. Structure and function of ER membrane contact sites with other organelles. Nat. Rev. Mol. Cell Biol. 17, 69–82 (2016).

    CAS  Google Scholar 

  143. Millecamps, S. & Julien, J. P. Axonal transport deficits and neurodegenerative diseases. Nat. Rev. Neurosci. 14, 161–176 (2013).

    CAS  Google Scholar 

  144. Xu, K., Zhong, G. S. & Zhuang, X. W. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339, 452–456 (2013).

    CAS  Google Scholar 

  145. Sherman, D. L. & Brophy, P. J. Mechanisms of axon ensheathment and myelin growth. Nat. Rev. Neurosci. 6, 683–690 (2005).

    CAS  Google Scholar 

  146. Sweeney, M. D., Sagare, A. P. & Zlokovic, B. V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 14, 133–150 (2018).

    CAS  Google Scholar 

  147. Duvernoy, H., Delon, S. & Vannson, J. L. The vascularization of the human cerebellar cortex. Brain Res. Bull. 11, 419–480 (1983).

    CAS  Google Scholar 

  148. Nicholson, C. & Hrabetova, S. Brain extracellular space: the final frontier of neuroscience. Biophys. J. 113, 2133–2142 (2017).

    CAS  Google Scholar 

  149. Budday, S. et al. Mechanical properties of gray and white matter brain tissue by indentation. J. Mech. Behav. Biomed. Mater. 46, 318–330 (2015).

    Google Scholar 

Download references

Acknowledgements

B.T. acknowledges support of this work by the Air Force Office of Scientific Research (AFOSR FA9550-18-1-0503), US Army Research Office (W911NF-18-1-0042), US Office of Naval Research (N000141612530, N000141612958) and the National Institutes of Health (NIH NS101488). W.W. acknowledges the National Institutes of Health (1R01NS109990-01). H.A.L. is supported by the National Institutes of Health (F31 EY029156-01A1). F.B. acknowledges the National Institutes of Health (R01-GM030376 and R21-EY027101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bozhi Tian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Acarón Ledesma, H., Li, X., Carvalho-de-Souza, J.L. et al. An atlas of nano-enabled neural interfaces. Nat. Nanotechnol. 14, 645–657 (2019). https://doi.org/10.1038/s41565-019-0487-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-019-0487-x

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research