Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy

Abstract

A tumour microenvironment imposes barriers to the passive diffusion of molecules, which renders tumour penetration an unresolved obstacle to an effective anticancer drug delivery. Here, we present a γ-glutamyl transpeptidase-responsive camptothecin–polymer conjugate that actively infiltrates throughout the tumour tissue through transcytosis. When the conjugate passes on the luminal endothelial cells of the tumour blood vessels or extravasates into the tumour interstitium, the overexpressed γ-glutamyl transpeptidase on the cell membrane cleaves the γ-glutamyl moieties of the conjugate to generate positively charged primary amines. The resulting cationic conjugate undergoes caveolae-mediated endocytosis and transcytosis, which enables transendothelial and transcellular transport and a relatively uniform distribution throughout the tumour. The conjugate showed a potent antitumour activity in mouse models that led to the eradication of small solid tumours (~100 mm3) and regression of large established tumours with clinically relevant sizes (~500 mm3), and significantly extended the survival of orthotopic pancreatic tumour-bearing mice compared to that with the first-line chemotherapeutic drug gemcitabine.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Scheme and characterization of the enzyme-activatable polymer–drug nanomedicine.
Fig. 2: The cell cytotoxicity assays of polymer-drug conjugates.
Fig. 3: In vitro penetration of polymer–drug conjugates in HepG2 tumour spheroids.
Fig. 4: Blood clearance, biodistribution and tumour penetration of polymer–drug conjugates in HepG2-tumour-bearing mice.
Fig. 5: Antitumour efficacy of polymer–drug conjugates against subcutaneous HepG2 tumours.
Fig. 6: Antitumour activity of polymer–drug conjugates against orthotopic pancreatic tumours.

Data availability

The authors declare that all data generated or analysed during this study are available in this published article and its supplementary information files or from the corresponding author upon request.

References

  1. 1.

    Shi, J., Kantoff, P. W., Wooster, R. & Farokhzad, O. C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17, 20–37 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    Youn, Y. S. & Bae, Y. H. Perspectives on the past, present, and future of cancer nanomedicine. Adv. Drug Deliv. Rev. 130, 3–11 (2018).

    CAS  Article  Google Scholar 

  3. 3.

    Sun, Q., Zhou, Z., Qiu, N. & Shen, Y. Rational design of cancer nanomedicine: nanoproperty integration and synchronization. Adv. Mater. 29, 1606628 (2017).

    Article  Google Scholar 

  4. 4.

    Matsumoto, Y. et al. Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery. Nat. Nanotechnol. 11, 533–538 (2016).

    CAS  Article  Google Scholar 

  5. 5.

    Heldin, C. H., Rubin, K., Pietras, K. & Ostman, A. High interstitial fluid pressure—an obstacle in cancer therapy. Nat. Rev. Cancer 4, 806–813 (2004).

    CAS  Article  Google Scholar 

  6. 6.

    Flessner, M. F. et al. Resistance of tumor interstitial pressure to the penetration of intraperitoneally delivered antibodies into metastatic ovarian tumors. Clin. Cancer Res. 11, 3117–3125 (2005).

    CAS  Article  Google Scholar 

  7. 7.

    Minchinton, A. I. & Tannock, I. F. Drug penetration in solid tumours. Nat. Rev. Cancer 6, 583–592 (2006).

    CAS  Article  Google Scholar 

  8. 8.

    Trédan, O., Galmarini, C. M., Patel, K. & Tannock, I. F. Drug resistance and the solid tumor microenvironment. J. Natl Cancer Inst. 99, 1441–1454 (2007).

    Article  Google Scholar 

  9. 9.

    Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Chauhan, V. P., Stylianopoulos, T., Boucher, Y. & Jain, R. K. Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies. Annu. Rev. Chem. Biomol. 2, 281–298 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    Yuan, F. et al. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res. 54, 3352–3356 (1994).

    CAS  Google Scholar 

  12. 12.

    Wong, C. et al. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl Acad. Sci. USA 108, 2426–2431 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    Oh, P. et al. Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung. Nat. Biotechnol. 25, 327–337 (2007).

    CAS  Article  Google Scholar 

  14. 14.

    Fung, K. Y. Y., Fairn, G. D. & Lee, W. L. Transcellular vesicular transport in epithelial and endothelial cells: challenges and opportunities. Traffic 19, 5–18 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    Syvanen, S., Eden, D. & Sehlin, D. Cationization increases brain distribution of an amyloid-beta protofibril selective F(ab′)(2) fragment. Biochem. Biophys. Res. Commun. 493, 120–125 (2017).

    Article  Google Scholar 

  16. 16.

    Miura, S., Suzuki, H. & Bae, Y. H. A multilayered cell culture model for transport study in solid tumors: evaluation of tissue penetration of polyethyleneimine based cationic micelles. Nano Today 9, 695–704 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    Feng, T. et al. Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano 10, 4410–4420 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    Xu, P. et al. Targeted charge-reversal nanoparticles for nuclear drug delivery. Angew. Chem. Int. Ed. 46, 4999–5002 (2007).

    CAS  Article  Google Scholar 

  19. 19.

    Gerweck, L. E. & Seetharaman, K. Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res. 56, 1194–1198 (1996).

    CAS  Google Scholar 

  20. 20.

    Li, H. J. et al. Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: instantaneous size switching and improved tumor penetration. ACS Nano 10, 6753–6761 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Liu, Y. et al. Visualizing glioma margins by real-time tracking of γ-glutamyltranspeptidase activity. Biomaterials 173, 1–10 (2018).

    Article  Google Scholar 

  22. 22.

    Urano, Y. et al. Rapid cancer detection by topically spraying a γ-glutamyltranspeptidase-activated fluorescent probe. Sci. Transl. Med. 3, 110ra119 (2011).

    Article  Google Scholar 

  23. 23.

    Zhang, Q. et al. A new class of NO-donor pro-drugs triggered by γ-glutamyl transpeptidase with potential for reno-selective vasodilatation. Chem. Commun. 49, 1389–1391 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    Castellano, I. & Merlino, A. γ-Glutamyltranspeptidases: sequence, structure, biochemical properties, and biotechnological applications. Cell. Mol. Life Sci. 69, 3381–3394 (2012).

    CAS  Article  Google Scholar 

  25. 25.

    Tate, S. S. & Meister, A. Interaction of γ-glutamyl transpeptidase with amino acids, dipeptides, and derivatives and analogs of glutathione. J. Biol. Chem. 249, 7593–7602 (1974).

    CAS  Google Scholar 

  26. 26.

    Zhou, Z. et al. Charge-reversal drug conjugate for targeted cancer cell nuclear drug delivery. Adv. Funct. Mater. 19, 3580–3589 (2009).

    CAS  Article  Google Scholar 

  27. 27.

    Mason, J. E., Starke, R. D. & Van Kirk, J. E. Gamma-glutamyl transferase: a novel cardiovascular risk biomarker. Prev. Cardiol. 13, 36–41 (2010).

    CAS  Article  Google Scholar 

  28. 28.

    Yamada, J. et al. Elevated serum levels of alanine aminotransferase and gamma glutamyltransferase are markers of inflammation and oxidative stress independent of the metabolic syndrome. Atherosclerosis 189, 198–205 (2006).

    CAS  Article  Google Scholar 

  29. 29.

    Remaley, A. T. & Wilding, P. Macroenzymes: biochemical characterization, clinical significance, and laboratory detection. Clin. Chem. 35, 2261–2270 (1989).

    CAS  Google Scholar 

  30. 30.

    Kwiecień, I. et al. The effect of modulation of γ-glutamyl transpeptidase and nitric oxide synthase activity on GSH homeostasis in HepG2 cells. Fundam. Clin. Pharmacol. 21, 95–103 (2007).

    Article  Google Scholar 

  31. 31.

    Hanigan, M. H. & Ricketts, W. A. Extracellular glutathione is a source of cysteine for cells that express gamma-glutamyl transpeptidase. Biochemistry 32, 6302–6306 (1993).

    CAS  Article  Google Scholar 

  32. 32.

    Han, L., Hiratake, J., Kamiyama, A. & Sakata, K. Design, synthesis, and evaluation of γ-phosphono diester analogues of glutamate as highly potent inhibitors and active site probes of γ-glutamyl transpeptidase. Biochemistry 46, 1432–1447 (2007).

    CAS  Article  Google Scholar 

  33. 33.

    Liao, Z.-X. et al. Mechanistic study of transfection of chitosan/DNA complexes coated by anionic poly(γ-glutamic acid). Biomaterials 33, 3306–3315 (2012).

    CAS  Article  Google Scholar 

  34. 34.

    Le, P. U. & Nabi, I. R. Distinct caveolae-mediated endocytic pathways target the Golgi apparatus and the endoplasmic reticulum. J. Cell Sci. 116, 1059–1071 (2003).

    CAS  Article  Google Scholar 

  35. 35.

    Wang, Z. et al. Delivery of nanoparticle-complexed drugs across the vascular endothelial barrier via caveolae. IUBMB Life 63, 659–667 (2011).

    CAS  Article  Google Scholar 

  36. 36.

    Bugno, J. et al. Size and surface charge of engineered poly(amidoamine) dendrimers modulate tumor accumulation and penetration: a model study using multicellular tumor spheroids. Mol. Pharm. 13, 2155–2163 (2016).

    CAS  Article  Google Scholar 

  37. 37.

    Suzuki, H. & Bae, Y. H. Evaluation of drug penetration with cationic micelles and their penetration mechanism using an in vitro tumor model. Biomaterials 98, 120–130 (2016).

    CAS  Article  Google Scholar 

  38. 38.

    Aller, S. G. et al. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323, 1718–1722 (2009).

    CAS  Article  Google Scholar 

  39. 39.

    Palmeira, A., Sousa, E., Vasconcelos, M. H. & Pinto, M. M. Three decades of P-gp inhibitors: skimming through several generations and scaffolds. Curr. Med. Chem. 19, 1946–2025 (2012).

    CAS  Article  Google Scholar 

  40. 40.

    Lee, J. S. et al. Rhodamine efflux patterns predict P-glycoprotein substrates in the National Cancer Institute drug screens. Mol. Pharmacol. 46, 627–638 (1994).

    CAS  Google Scholar 

  41. 41.

    Li, X.-Q. et al. Self-assembling nanomicelles of a novel camptothecin prodrug engineered with a redox-responsive release mechanism. Chem. Commun. 47, 8647–8649 (2011).

    CAS  Article  Google Scholar 

  42. 42.

    Shao, S. et al. A non-cytotoxic dendrimer with innate and potent anticancer and anti-metastatic activities. Nat. Biomed. Eng. 1, 745–757 (2017).

    CAS  Article  Google Scholar 

  43. 43.

    Wang, J. et al. The role of micelle size in tumor accumulation, penetration, and treatment. ACS Nano 9, 7195–7206 (2015).

    CAS  Article  Google Scholar 

  44. 44.

    Murakami, M. et al. Improving drug potency and efficacy by nanocarrier-mediated subcellular targeting. Sci. Transl. Med. 3, 64ra62 (2011).

    Article  Google Scholar 

  45. 45.

    Wushou, A. & Miao, X.-C. Tumor size predicts prognosis of head and neck synovial cell sarcoma. Oncol. Lett. 9, 381–386 (2015).

    Article  Google Scholar 

  46. 46.

    Hanigan, M. H., Frierson, H. F., Swanson, P. E. & De Young, B. R. Altered expression of gamma-glutamyl transpeptidase in human tumors. Hum. Pathol. 30, 300–305 (1999).

    CAS  Article  Google Scholar 

  47. 47.

    Lu, Y., Aimetti, A. A., Langer, R. & Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2, 16075 (2016).

    Article  Google Scholar 

  48. 48.

    Li, C.-L. et al. Survival advantages of multicellular spheroids vs. monolayers of HepG2 cells in vitro. Oncol. Rep. 20, 1465–1471 (2008).

    Google Scholar 

  49. 49.

    Chai, M. G., Kim-Fuchs, C., Angst, E. & Sloan, E. K. Bioluminescent orthotopic model of pancreatic cancer progression. J. Vis. Exp. 76, e50395 (2013).

    Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (U1501243, 51833008, 51390481 and 51522304), National Basic Research Program of China (2014CB931900), the National Key Research and Development Program (2016YFA0200301), the Experimental Technology Research Program of Zhejiang University (SYB201605) and the Alfred P. Sloan Foundation for financial support.

Author information

Affiliations

Authors

Contributions

Y.S. and Z.G. supervised the project and wrote the manuscript with Q.Z. and R.M.; Q.Z., C.X., S.S. and J.X. performed all the experiments; J.W., Q.Y., Z.Gan and R.M. re-evaluated the anticancer activity; Y.P. and X.L. instructed the bioassays; J.T. and Z.Z. instructed the synthesis.

Corresponding authors

Correspondence to Zhen Gu or Youqing Shen.

Ethics declarations

Competing interests

Z.G. is a scientific co-founder of ZenCapsule, Inc. All the authors declare no conflicting interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figs. 1–30, Supplementary Table. 1 and 2, and Supplementary references.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Shao, S., Wang, J. et al. Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol. 14, 799–809 (2019). https://doi.org/10.1038/s41565-019-0485-z

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research