Abstract
Recently, several reports have experimentally shown near-field radiative heat transfer (NFRHT) exceeding the far-field blackbody limit between planar surfaces1,2,3,4,5. However, owing to the difficulties associated with maintaining the nanosized gap required for measuring a near-field enhancement, these demonstrations have been limited to experiments that cannot be implemented in large-scale devices. This poses a bottleneck to the deployment of NFRHT concepts in practical applications. Here, we describe a device bridging laboratory-scale measurements and potential NFRHT engineering applications in energy conversion6,7 and thermal management8,9,10. We report a maximum NFRHT enhancement of approximately 28.5 over the blackbody limit with devices made of millimetre-sized doped Si surfaces separated by vacuum gap spacings down to approximately 110 nm. The devices use micropillars, separating the high-temperature emitter and low-temperature receiver, manufactured within micrometre-deep pits. These micropillars, which are about 4.5 to 45 times longer than the nanosize vacuum spacing at which radiation transfer takes place, minimize parasitic heat conduction without sacrificing the structural integrity of the device. The robustness of our devices enables gap spacing visualization by scanning electron microscopy (SEM) before performing NFRHT measurements.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
High-performance photonic transformers for DC voltage conversion
Nature Communications Open Access 03 August 2021
-
Toward applications of near-field radiative heat transfer with micro-hotplates
Scientific Reports Open Access 12 July 2021
-
Integrated near-field thermo-photovoltaics for heat recycling
Nature Communications Open Access 21 May 2020
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



Data availability
The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.
Code availability
The computer codes that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.
References
Song, B. et al. Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps. Nat. Nanotechnol. 11, 509–514 (2016).
Watjen, J. I., Zhao, B. & Zhang, Z. M. Near-field radiative heat transfer between doped-Si parallel plates separated by a spacing down to 200 nm. Appl. Phys. Lett. 109, 203112 (2016).
Fiorino, A. et al. Giant enhancement in radiative heat transfer in sub-30 nm gaps of plane parallel surfaces. Nano Lett. 18, 3711–3715 (2018).
Ghashami, M. et al. Precision measurement of phonon-polaritonic near-field energy transfer between macroscale planar structures under large thermal gradients. Phys. Rev. Lett. 120, 175901 (2018).
Lim, M., Song, J., Lee, S. S. & Lee, B. J. Tailoring near-field thermal radiation between metallo-dielectric multilayers using coupled surface plasmon polaritons. Nat. Commun. 9, 4302 (2018).
DiMatteo, R. S. et al. Enhanced photogeneration of carriers in a semiconductor via coupling across a nonisothermal nanoscale vacuum gap. Appl. Phys. Lett. 79, 1894–1896 (2001).
Fiorino, A. et al. Nanogap near-field thermophotovoltaics. Nat. Nanotechnol. 13, 806–811 (2018).
Ito, K., Nishikawa, K., Miura, A., Toshiyoshi, H. & Iizuka, H. Dynamic modulation of radiative heat transfer beyond the blackbody limit. Nano Lett. 17, 4347–4353 (2017).
Elzouka, M. & Ndao, S. High temperature near-field nanothermomechanical rectification. Sci. Rep. 7, 44901 (2017).
Fiorino, A. et al. A thermal diode based on nanoscale thermal radiation. ACS Nano 12, 5774–5779 (2018).
Polder, D. & Van Hove, M. Theory of radiative heat transfer between closely spaced bodies. Phys. Rev. B 4, 3303–3314 (1971).
Ottens, R. S. et al. Near-field radiative heat transfer between macroscopic planar surfaces. Phys. Rev. Lett. 107, 014301 (2011).
Ijiro, T. & Yamada, N. Near-field radiative heat transfer between two parallel SiO2 plates with and without microcavities. Appl. Phys. Lett. 106, 23103 (2015).
Hu, L., Narayanaswamy, A., Chen, X. & Chen, G. Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law. Appl. Phys. Lett. 92, 133106 (2008).
Lang, S. et al. Dynamic measurement of near-field radiative heat transfer. Sci. Rep. 7, 13916 (2017).
Ito, K., Miura, A., Iizuka, H. & Toshiyoshi, H. Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer. Appl. Phys. Lett. 106, 083504 (2015).
Yang, J. et al. Observing of the super-Planckian near-field thermal radiation between graphene sheets. Nat. Commun. 9, 4033 (2018).
Bernardi, M. P., Milovich, D. & Francoeur, M. Radiative heat transfer exceeding the blackbody limit between macroscale planar surfaces separated by a nanosize vacuum gap. Nat. Commun. 7, 12900 (2016).
St-Gelais, R., Guha, B., Zhu, L., Fan, S. & Lipson, M. Demonstration of strong near-field radiative heat transfer between integrated nanostructures. Nano Lett. 14, 6971–6975 (2014).
St-Gelais, R., Zhu, L., Fan, S. & Lipson, M. Near-field radiative heat transfer between parallel structures in the deep subwavelength regime. Nat. Nanotechnol. 11, 515–519 (2016).
Lim, M., Lee, S. S. & Lee, B. J. Near-field thermal radiation between doped silicon plates at nanoscale gaps. Phys. Rev. B 91, 195136 (2015).
Voicu, R. C., Al Zandi, M., Müller, R. & Wang, C. Nonlinear numerical analysis and experimental testing for an electrothermal SU-8 microgripper with reduced out-of-plane displacement. J. Phys. Conf. Ser. 922, 12006 (2017).
DiMatteo, R. et al. Micron-gap thermophotovoltaics (MTPV). AIP Conf. Proc. 738, 42–51 (2004).
Francoeur, M., Vaillon, R. & Mengüç, M. P. Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators. IEEE Trans. Energy Convers. 26, 686–698 (2011).
Thompson, D. et al. Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit. Nature 561, 216–221 (2018).
Greffet, J. J., Bouchon, P., Brucoli, G. & Marquier, F. Light emission by nonequilibrium bodies: local Kirchhoff law. Phys. Rev. X 8, 021008 (2018).
Chung, S. & Park, S. Effects of temperature on mechanical properties of SU-8 photoresist material. J. Mech. Sci. Technol. 27, 2701–2707 (2013).
Rousseau, E., Laroche, M. & Greffet, J.-J. Radiative heat transfer at nanoscale: closed-form expression for silicon at different doping level. J. Quant. Spectrosc. Ra. 111, 1005–1014 (2010).
Basu, S., Lee, B. J. & Zhang, Z. M. Infrared radiative properties of heavily doped silicon at room temperature. J. Heat. Transf. 132, 23301 (2010).
Maier, S. A. Plasmonics: Fundamentals and Applications (Springer, 2007).
Acknowledgements
The authors acknowledge financial support from the National Science Foundation (grant no. CBET-1253577). This work was performed in part at the Utah Nanofab sponsored by the College of Engineering, Office of the Vice President for Research and the Utah Science Technology and Research (USTAR) initiative of the State of Utah. The authors appreciate the support of the staff and facilities that made this work possible. This work also made use of University of Utah shared facilities of the Micron Technology Foundation Inc. Microscopy Suite sponsored by the College of Engineering, Health Sciences Center, Office of Vice President for Research and the Utah Science Technology and Research (USTAR) initiative of the State of Utah.
Author information
Authors and Affiliations
Contributions
This work was conceived by J.D. and M.F. Design, fabrication and testing of the device, as well as the associated numerical simulations, were performed by J.D. under the supervision of M.F. Calibration of the experimental system was done by J.D. and L.T. under the supervision of M.F. The manuscript was written by J.D. and M.F with comments provided by L.T.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information: Nature Nanotechnology thanks Raphael St-Gelais and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Fig. 1–9; Supplementary Sections 1–3
Rights and permissions
About this article
Cite this article
DeSutter, J., Tang, L. & Francoeur, M. A near-field radiative heat transfer device. Nat. Nanotechnol. 14, 751–755 (2019). https://doi.org/10.1038/s41565-019-0483-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41565-019-0483-1
This article is cited by
-
Near-field radiative heat transfer enhancement by multilayers and gratings in the thermophotovoltaic system
Science China Technological Sciences (2023)
-
View factor for radiative heat transfer calculations between triangular geometries with common edge
Journal of Thermal Analysis and Calorimetry (2023)
-
High-performance photonic transformers for DC voltage conversion
Nature Communications (2021)
-
Toward applications of near-field radiative heat transfer with micro-hotplates
Scientific Reports (2021)
-
Integrated near-field thermo-photovoltaics for heat recycling
Nature Communications (2020)