Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Defect induced, layer-modulated magnetism in ultrathin metallic PtSe2


Defects are ubiquitous in solids and often introduce new properties that are absent in pristine materials. One of the opportunities offered by these crystal imperfections is an extrinsically induced long-range magnetic ordering1, a long-time subject of theoretical investigations1,2,3. Intrinsic, two-dimensional (2D) magnetic materials4,5,6,7 are attracting increasing attention for their unique properties, which include layer-dependent magnetism4 and electric field modulation6. Yet, to induce magnetism into otherwise non-magnetic 2D materials remains a challenge. Here we investigate magneto-transport properties of ultrathin PtSe2 crystals and demonstrate an unexpected magnetism. Our electrical measurements show the existence of either ferromagnetic or antiferromagnetic ground-state orderings that depends on the number of layers in this ultrathin material. The change in the device resistance on the application of a ~25 mT magnetic field is as high as 400 Ω with a magnetoresistance value of 5%. Our first-principles calculations suggest that surface magnetism induced by the presence of Pt vacancies and the Ruderman–Kittel–Kasuya–Yosida (RKKY) exchange couplings across ultrathin films of PtSe2 are responsible for the observed layer-dependent magnetism. Given the existence of such unavoidable growth-related vacancies in 2D materials8,9, these findings can expand the range of 2D ferromagnets into materials that would otherwise be overlooked.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Device structure and basic characterization.
Fig. 2: Bias and temperature-dependent magnetoresistance measurements in device A.
Fig. 3: Bias and temperature-dependent magnetoresistance measurements in device B (~9 nm thick).
Fig. 4: Layer-dependent magnetoresistance measurements.
Fig. 5: Theoretical investigations of PtSe2.

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request.


  1. 1.

    Esquinazi, P., Hergert, W., Spemann, D., Setzer, A. & Ernst, A. Defect-induced magnetism in solids. IEEE Trans. Magn. 49, 4668–4674 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    Yazyev, O. V. & Helm, L. Defect-induced magnetism in graphene. Phys. Rev. B 75, 125408 (2007).

    Article  Google Scholar 

  3. 3.

    Osorio-Guillén, J., Lany, S., Barabash, S. V. & Zunger, A. Magnetism without magnetic ions: percolation, exchange, and formation energies of magnetism-promoting intrinsic defects in CaO. Phys. Rev. Lett. 96, 107203 (2006).

    Article  Google Scholar 

  4. 4.

    Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    CAS  Article  Google Scholar 

  7. 7.

    Bonilla, M. et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 13, 289–293 (2018).

    CAS  Article  Google Scholar 

  8. 8.

    Zhou, W. et al. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615–2622 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    Zheng, H. et al. Intrinsic point defects in ultrathin 1T-PtSe2 layers. Preprint at (2018).

  10. 10.

    Hardy, W. J. et al. Very large magnetoresistance in Fe0.28TaS2 single crystals. Phys. Rev. B 91, 054426 (2015).

    Article  Google Scholar 

  11. 11.

    Wang, Z., Tang, C., Sachs, R., Barlas, Y. & Shi, J. Proximity-induced ferromagnetism in graphene revealed by the anomalous Hall effect. Phys. Rev. Lett. 114, 016603 (2015).

    Article  Google Scholar 

  12. 12.

    Guguchia, Z. et al. Magnetism in semiconducting molybdenum dichalcogenides. Sci. Adv. 4, eaat3672 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    Gao, J. et al. Structure, stability, and kinetics of vacancy defects in monolayer PtSe2: a first-principles study. ACS Omega 2, 8640–8648 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Zhang, W. et al. Magnetism and magnetocrystalline anisotropy in single-layer PtSe2: interplay between strain and vacancy. J. Appl. Phys. 120, 013904 (2016).

    Article  Google Scholar 

  15. 15.

    Krasheninnikov, A. V. & Nordlund, K. Ion and electron irradiation-induced effects in nanostructured materials. J. Appl. Phys. 107, 071301 (2010).

    Article  Google Scholar 

  16. 16.

    Ciarrocchi, A., Avsar, A., Ovchinnikov, D. & Kis, A. Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide. Nat. Commun. 9, 919 (2018).

    Article  Google Scholar 

  17. 17.

    Zhao, Y. et al. High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv. Mater. 29, 1604230 (2017).

    Article  Google Scholar 

  18. 18.

    Leven, B. & Dumpich, G. Resistance behavior and magnetization reversal analysis of individual Co nanowires. Phys. Rev. B 71, 064411 (2005).

    Article  Google Scholar 

  19. 19.

    Huang, F., Kief, M. T., Mankey, G. J. & Willis, R. F. Magnetism in the few-monolayers limit: a surface magneto-optic Kerr-effect study of the magnetic behavior of ultrathin films of Co, Ni, and Co–Ni alloys on Cu(100) and Cu(111). Phys. Rev. B 49, 3962–3971 (1994).

    CAS  Article  Google Scholar 

  20. 20.

    Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018).

    CAS  Article  Google Scholar 

  22. 22.

    Ruderman, M. A. & Kittel, C. Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Phys. Rev. 96, 99–102 (1954).

    CAS  Article  Google Scholar 

  23. 23.

    Kasuya, T. A theory of metallic ferro- and antiferromagnetism on Zener’s model. Prog. Theor. Phys. 16, 45–57 (1956).

    Article  Google Scholar 

  24. 24.

    Yosida, K. Magnetic properties of Cu–Mn alloys. Phys. Rev. 106, 893–898 (1957).

    Article  Google Scholar 

  25. 25.

    Zhang, K. et al. Experimental evidence for type-II Dirac semimetal in PtSe2. Phys. Rev. B 96, 125102 (2017).

    Article  Google Scholar 

  26. 26.

    Clark, O. J. et al. Dual quantum confinement and anisotropic spin splitting in the multivalley semimetal PtSe2. Phys. Rev. B 99, 045438 (2019).

    CAS  Article  Google Scholar 

  27. 27.

    Pizzochero, M. & Yazyev, O. V. Point defects in the 1T′ and 2H phases of single-layer MoS2: a comparative first-principles study. Phys. Rev. B 96, 245402 (2017).

    Article  Google Scholar 

  28. 28.

    Yu, X. et al. Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor. Nat. Commun. 9, 1545 (2018).

    Article  Google Scholar 

  29. 29.

    Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  Google Scholar 

  30. 30.

    Han, W., Kawakami, R. K., Gmitra, M. & Fabian, J. Graphene spintronics. Nat. Nanotechnol. 9, 794–807 (2014).

    CAS  Article  Google Scholar 

  31. 31.

    Wen, H. et al. Experimental demonstration of XOR operation in graphene magnetologic gates at room temperature. Phys. Rev. Appl. 5, 044003 (2016).

    Article  Google Scholar 

  32. 32.

    Žutić, I., Matos-Abiague, A., Scharf, B., Dery, H. & Belashchenko, K. Proximitized materials. Mater. Today 22, 85–107 (2019).

    Article  Google Scholar 

  33. 33.

    Scharf, B., Xu, G., Matos-Abiague, A. & Žutić, I. Magnetic proximity effects in transition-metal dichalcogenides: converting excitons. Phys. Rev. Lett. 119, 127403 (2017).

    Article  Google Scholar 

  34. 34.

    Yang, T., Kimura, T. & Otani, Y. Giant spin-accumulation signal and pure spin–current-induced reversible magnetization switching. Nat. Phys. 4, 851–854 (2008).

    CAS  Article  Google Scholar 

  35. 35.

    Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).

    CAS  Article  Google Scholar 

  36. 36.

    Avsar, A. et al. Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes. Nat. Phys. 13, 888–893 (2017).

    CAS  Article  Google Scholar 

  37. 37.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Article  Google Scholar 

  38. 38.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Article  Google Scholar 

  39. 39.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Article  Google Scholar 

  40. 40.

    Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745 (2002).

    CAS  Article  Google Scholar 

Download references


We acknowledge A. H. C. Neto for fruitful insights and discussions. We acknowledge the help of Z. Benes (CMI) with electron-beam lithography and K. Marinov for training on the measurement set-up. A.A., A.C., D.U. and A.K. acknowledge support by the European Research Council (ERC, grant 682332), Swiss National Science Foundation (grant 153298) and Marie Curie-Sklodowska COFUND (grant 665667). A.K. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no 785219 (Graphene Flagship). M.P. and O.V.Y. acknowledge support by the Swiss National Science Foundation (grants 162612 and 172543). First-principles simulations were carried out at the Swiss National Supercomputing Centre (CSCS) under project s832.

Author information




A.A. and A.K. designed the experiments. A.A. and A.C. fabricated the samples. A.A. performed the transport measurements. A.C. and D.U. performed the Raman spectroscopy measurements. M.P. and O.V.Y. devised the theoretical models and performed the first-principles calculations. A.A., M.P. and A.K. wrote the manuscript with input from A.C.

Corresponding authors

Correspondence to Ahmet Avsar or Andras Kis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Avsar, A., Ciarrocchi, A., Pizzochero, M. et al. Defect induced, layer-modulated magnetism in ultrathin metallic PtSe2. Nat. Nanotechnol. 14, 674–678 (2019).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research