Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries

Subjects

Abstract

The urgent need for safer batteries is leading research to all-solid-state lithium-based cells. To achieve energy density comparable to liquid electrolyte-based cells, ultrathin and lightweight solid electrolytes with high ionic conductivity are desired. However, solid electrolytes with comparable thicknesses to commercial polymer electrolyte separators (~10 μm) used in liquid electrolytes remain challenging to make because of the increased risk of short-circuiting the battery. Here, we report on a polymer–polymer solid-state electrolyte design, demonstrated with an 8.6-μm-thick nanoporous polyimide (PI) film filled with polyethylene oxide/lithium bis(trifluoromethanesulfonyl)imide (PEO/LiTFSI) that can be used as a safe solid polymer electrolyte. The PI film is nonflammable and mechanically strong, preventing batteries from short-circuiting even after more than 1,000 h of cycling, and the vertical channels enhance the ionic conductivity (2.3 × 10−4 S cm−1 at 30 °C) of the infused polymer electrolyte. All-solid-state lithium-ion batteries fabricated with PI/PEO/LiTFSI solid electrolyte show good cycling performance (200 cycles at C/2 rate) at 60 °C and withstand abuse tests such as bending, cutting and nail penetration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of polymer–polymer composite SSE.
Fig. 2: Characterization and understanding of PEO/LiTFSI in aligned channels.
Fig. 3: Mechanical and fire-retarding properties of PI/PEO/LiTFSI.
Fig. 4: Full-cell performance with PI/PEO/LiTFSI-based batteries.
Fig. 5: Abuse tests of PI/PEO/LiTFSI.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    Article  CAS  Google Scholar 

  2. Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004).

    Article  CAS  Google Scholar 

  3. Goodenough, J. B. & Park, K. S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

    Article  CAS  Google Scholar 

  4. Sun, Y., Liu, N. & Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 1, 16071 (2016).

    Article  CAS  Google Scholar 

  5. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    Article  CAS  Google Scholar 

  6. Suo, L. et al. ‘Water-in-salt’ electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    Article  CAS  Google Scholar 

  7. Tan, G. et al. Burning lithium in CS2 for high-performing compact Li2S–graphene nanocapsules for Li–S batteries. Nat. Energy 2, 17090 (2017).

    Article  CAS  Google Scholar 

  8. Sun, Y. K. et al. High-energy cathode material for long-life and safe lithium batteries. Nat. Mater. 8, 320–324 (2009).

    Article  CAS  Google Scholar 

  9. Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).

    Article  CAS  Google Scholar 

  10. Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014).

    Article  CAS  Google Scholar 

  11. Zheng, Q., Ma, L., Khurana, R., Archer, L. A. & Coates, G. W. Structure–property study of cross-linked hydrocarbon/poly(ethylene oxide) electrolytes with superior conductivity and dendrite resistance. Chem. Sci. 7, 6832–6838 (2016).

    Article  CAS  Google Scholar 

  12. Ji, X. et al. Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition. Nano Today 7, 10–20 (2012).

    Article  CAS  Google Scholar 

  13. Bachman, J. C. et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016).

    Article  CAS  Google Scholar 

  14. Miller, T. F., Wang, Z. G., Coates, G. W. & Balsara, N. P. Designing polymer electrolytes for safe and high capacity rechargeable lithium batteries. Acc. Chem. Res. 50, 590–593 (2017).

    Article  CAS  Google Scholar 

  15. Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

    Article  CAS  Google Scholar 

  16. Wang, Y. et al. Design principles for solid-state lithium superionic conductors. Nat. Mater. 14, 1026–1031 (2015).

    Article  CAS  Google Scholar 

  17. Fan, L., Wei, S., Li, S., Li, Q. & Lu, Y. Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv. Energy Mater. 8, 1702657 (2018).

    Article  Google Scholar 

  18. Han, X. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2017).

    Article  CAS  Google Scholar 

  19. Han, F., Gao, T., Zhu, Y., Gaskell, K. J. & Wang, C. A battery made from a single material. Adv. Mater. 27, 3473–3483 (2015).

    Article  CAS  Google Scholar 

  20. Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

    Article  CAS  Google Scholar 

  21. Christie, A. M., Lilley, S. J., Staunton, E., Andreev, Y. G. & Bruce, P. G. Increasing the conductivity of crystalline polymer electrolytes. Nature 433, 50–53 (2005).

    Article  CAS  Google Scholar 

  22. Zhang, J. et al. Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries. Adv. Energy Mater. 5, 1501082 (2015).

    Article  Google Scholar 

  23. Lin, D. et al. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 16, 459–465 (2016).

    Article  CAS  Google Scholar 

  24. Liu, W. et al. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat. Energy 2, 17035 (2017).

    Article  CAS  Google Scholar 

  25. Li, Y. et al. Mastering the interface for advanced all-solid-state lithium rechargeable batteries. Proc. Natl Acad. Sci. USA 113, 13313–13317 (2016).

    Article  CAS  Google Scholar 

  26. Han, F. et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019).

    Article  CAS  Google Scholar 

  27. Tian, H. K., Xu, B. & Qi, Y. Computational study of lithium nucleation tendency in Li7La3Zr2O12 (LLZO) and rational design of interlayer materials to prevent lithium dendrites. J. Power Sources 392, 79–86 (2018).

    Article  CAS  Google Scholar 

  28. Fu, K. et al. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries. Energy Environ. Sci. 10, 1568–1575 (2017).

    Article  CAS  Google Scholar 

  29. Harry, K. J., Hallinan, D. T., Parkinson, D. Y., MacDowell, A. A. & Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69–73 (2014).

    Article  CAS  Google Scholar 

  30. Xue, Z., He, D. & Xie, X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 3, 19218–19253 (2015).

    Article  CAS  Google Scholar 

  31. Croce, F., Appetecchi, G. B., Persi, L. & Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458 (1998).

    Article  CAS  Google Scholar 

  32. Wang, C., Zhang, X.-W. & Appleby, A. J. Solvent-free composite peo-ceramic fiber/mat electrolytes for lithium secondary cells. J. Electrochem. Soc. 152, A205–A209 (2005).

    Article  CAS  Google Scholar 

  33. Fu, K. et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl Acad. Sci. USA 113, 7094–7099 (2016).

    Article  CAS  Google Scholar 

  34. Zhao, C.-Z. et al. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl Acad. Sci. USA 114, 11069–11074 (2017).

    Article  CAS  Google Scholar 

  35. Villaluenga, I. H. et al. Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries. Proc. Natl Acad. Sci. USA 113, 52–57 (2016).

    Article  CAS  Google Scholar 

  36. Zhai, H. et al. A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries. Nano Lett. 17, 3182–3187 (2017).

    Article  CAS  Google Scholar 

  37. Zheng, J., Tang, M. & Hu, Y. Y. Lithium ion pathway within Li7La3Zr2O12–polyethylene oxide composite electrolytes. Angew. Chem. Int. Ed. 55, 12538–12542 (2016).

    Article  CAS  Google Scholar 

  38. Singh, V. et al. High thermal conductivity of chain-oriented amorphous polythiophene. Nat. Nanotechnol. 9, 384–390 (2014).

    Article  CAS  Google Scholar 

  39. Jo, G., Ahn, H. & Park, M. J. Simple route for tuning the morphology and conductivity of polymer electrolytes: one end functional group is enough. ACS Macro Lett. 2, 990–995 (2013).

    Article  CAS  Google Scholar 

  40. Webb, M. A. et al. Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes. ACS Cent. Sci. 1, 198–205 (2015).

    Article  CAS  Google Scholar 

  41. Sethuraman, V., Mogurampelly, S. & Ganesan, V. Ion transport mechanisms in lamellar phases of salt-doped PS–PEO block copolymer electrolytes. Soft Matter 13, 7793–7803 (2017).

    Article  CAS  Google Scholar 

  42. Golodnitsky, D., Livshits, E. & Peled, E. Highly conductive oriented PEO-based polymer electrolytes. Macromol. Symp. 203, 27–45 (2003).

    Article  CAS  Google Scholar 

  43. Toney, M. F. et al. Near-surface alignment of polymers in rubbed films. Nature 374, 709–711 (1995).

    Article  CAS  Google Scholar 

  44. Wang, C. et al. In situ neutron depth profiling of lithium metal–garnet interfaces for solid state batteries. J. Am. Chem. Soc. 139, 14257–14264 (2017).

    Article  CAS  Google Scholar 

  45. Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    Article  CAS  Google Scholar 

  46. Frisch, M. J. et al. Gaussian 09 (Gaussian, Inc., 2009).

  47. Van Der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US Department of Energy under the Battery Materials Research (BMR) programme and Battery 500 Consortium programme. Z.L. and L.-Q.C. also acknowledge the support from the Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), under the Award (DE-EE0007803).

Author information

Authors and Affiliations

Authors

Contributions

J. Wan, J.X. and Y.C. designed the research. J. Wan and J.X. conducted the fabrication and electrochemical characterization of the hybrid SPE. J. Wan, J.X., K.L., F.S. and H.C. did sample characterizations. W.C., J.C., J. Wang and X.Z. helped with sample fabrication and processing. X.K. and J.Q. performed the molecular dynamics simulations and data analysis. Z.L. and L.-Q.C. performed the phase field simulations and data analysis. J. Wan, J.X., F.S., A.P. and Y.C. wrote the manuscript. All authors contributed to the discussion of the manuscript.

Corresponding author

Correspondence to Yi Cui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Methods, Supplementary Figs. 1–24 and Supplementary Table 1

Supplementary Video 1

Flame test of PP/PE/PP separator

Supplementary Video 2

Flame test of PEO/LiTFSI SPE

Supplementary Video 3

Flame test of PI film

Supplementary Video 4

Nail penetration test of LFP/PI/PEO/LiTFSI/Li pouch cell

Supplementary Video 5

Phase evolution of Li deposition with PI/PEO/LiTFSI/PEO/Al2O3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, J., Xie, J., Kong, X. et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 14, 705–711 (2019). https://doi.org/10.1038/s41565-019-0465-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-019-0465-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing