Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Opportunities and challenges for nanotechnology in the agri-tech revolution

Abstract

Current agricultural practices, developed during the green revolution, are becoming unsustainable, especially in the face of climate change and growing populations. Nanotechnology will be an important driver for the impending agri-tech revolution that promises a more sustainable, efficient and resilient agricultural system, while promoting food security. Here, we present the most promising new opportunities and approaches for the application of nanotechnology to improve the use efficiency of necessary inputs (light, water, soil) for crop agriculture, and for better managing biotic and abiotic stress. Potential development and implementation barriers are discussed, emphasizing the need for a systems approach to designing proposed nanotechnologies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The green revolution and the new agri-tech revolution.
Fig. 2: Agricultural uses of nanotechnology.
Fig. 3: System trade-offs.

References

  1. 1.

    World Agricultural Production Circular Series WAP 4-18 (USDA, 2018).

  2. 2.

    Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Article  Google Scholar 

  3. 3.

    Zhang, W. Global pesticide use: profile, trend, cost/benefit and more. Proc. Int. Acad. Ecol. Environ. Sci. 8, 1–27 (2018).

    Google Scholar 

  4. 4.

    AQUASTAT Water Withdrawal by Sector 1–2 (FAO, 2012); http://www.fao.org/nr/water/aquastat/data/

  5. 5.

    International Energy Outlook 2016 Vol. 0484 (US EIA, 2016).

  6. 6.

    FAOSTAT Food balance sheets: Cambodia (FAO, 2014).

  7. 7.

    Science Breakthroughs to Advance Food and Agricultural Research by 2030 (National Academies Press, 2018).

  8. 8.

    Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).

    CAS  Article  Google Scholar 

  9. 9.

    Klarich, K. L. et al. Occurrence of neonicotinoid insecticides in finished drinking water and fate during drinking water treatment. Environ. Sci. Technol. Lett. 4, 168–173 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    Pinder, R. W., Anderson, N. J., Strader, R., Davidson, C. I. & Adams, P. J. Ammonia Emissions from Dairy Farms: Development of a Farm Model and Estimation of Emissions from the United States (EPA, 1998).

  11. 11.

    Pimentel, D. & Burgess, M. Soil erosion threatens food production. Agriculture 3, 443–463 (2013).

    Article  Google Scholar 

  12. 12.

    Summary Report: 2015 National Resources Inventory (US Department of Agriculture, 2018).

  13. 13.

    Beketov, M. A., Kefford, B. J., Schafer, R. B. & Liess, M. Pesticides reduce regional biodiversity of stream invertebrates. Proc. Natl Acad. Sci. USA 110, 11039–11043 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    Goulson, D. An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 50, 977–987 (2013).

    Article  Google Scholar 

  15. 15.

    Jaganathan, D., Ramasamy, K., Sellamuthu, G., Jayabalan, S. & Venkataraman, G. CRISPR for crop improvement: an update review. Front. Plant Sci. 9, 985 (2018).

    Article  Google Scholar 

  16. 16.

    Glick, B. R. Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012, 1–15 (2012).

    Article  Google Scholar 

  17. 17.

    Giraldo, J. P., Wu, H., Newkirk, G. M. & Kruss, S. Nat. Nanotechnol. https://doi.org/10.1038/s41565-019-0470-6 (2019).

  18. 18.

    Alexander, P. et al. Losses, inefficiencies and waste in the global food system. Agric. Syst. 153, 190–200 (2017).

    Article  Google Scholar 

  19. 19.

    Kah, M., Tufenkji, N. & White, J. C. Nano-enabled strategies to enhance crop nutrition and protection. Nat. Nanotechnol. https://doi.org/10.1038/s41565-019-0439-5 (2019).

  20. 20.

    Siebert, S. & Döll, P. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J. Hydrol. 384, 198–217 (2010).

    Article  Google Scholar 

  21. 21.

    Vörösmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global water resources: vulnerability from climate change and population growth. Science 289, 284–288 (2000).

    Article  Google Scholar 

  22. 22.

    Alvarez, P. J. J., Chan, C. K., Elimelech, M., Halas, N. J. & Villagrán, D. Emerging opportunities for nanotechnology to enhance water security. Nat. Nanotechnol. 13, 634–641 (2018).

    CAS  Article  Google Scholar 

  23. 23.

    Wang, P. Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environ. Sci. Nano. 5, 1078–1089 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    Villagarcia, H., Dervishi, E., De Silva, K., Biris, A. S. & Khodakovskaya, M. V. Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small 8, 2328–2334 (2012).

    CAS  Article  Google Scholar 

  25. 25.

    Zhou, L. et al. Fabrication of a high-performance fertilizer to control the loss of water and nutrient using micro/nano networks. ACS Sustain. Chem. Eng. 3, 645–653 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Rodrigues, S. M. et al. Nanotechnology for sustainable food production: promising opportunities and scientific challenges. Environ. Sci. Nano 4, 767–781 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    Plazas-Tuttle, J., Das, D., Sabaraya, I. V. & Saleh, N. B. Harnessing the power of microwaves for inactivating Pseudomonas aeruginosa with nanohybrids. Environ. Sci. Nano 5, 72–82 (2018).

    CAS  Article  Google Scholar 

  28. 28.

    Zhu, X. G., Ort, D. R., Whitmarsh, J. & Long, S. P. The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: a theoretical analysis. J. Exp. Bot. 55, 1167–1175 (2004).

    CAS  Article  Google Scholar 

  29. 29.

    Long, S. P., Marshall-Colon, A. & Zhu, X. G. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161, 56–66 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Giraldo, J. P. et al. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater. 13, 400–408 (2014).

    CAS  Article  Google Scholar 

  31. 31.

    Xiong, J. L., Li, J., Wang, H. C., Zhang, C. L. & Naeem, M. S. Fullerol improves seed germination, biomass accumulation, photosynthesis and antioxidant system in Brassica napus L. under water stress. Plant Physiol. Biochem. 129, 130–140 (2018).

    CAS  Article  Google Scholar 

  32. 32.

    Raliya, R., Nair, R., Chavalmane, S., Wang, W. N. & Biswas, P. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7, 1584–1594 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    Wu, H., Tito, N. & Giraldo, J. P. Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano 11, 11283–11297 (2017).

    CAS  Article  Google Scholar 

  34. 34.

    Myers, S. S. et al. Increasing CO2 threatens human nutrition. Nature 510, 139–142 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    Amenumey, S. E. & Capel, P. D. Fertilizer consumption and energy input for 16 crops in the United States. Nat. Resour. Res. 23, 299–309 (2014).

    CAS  Article  Google Scholar 

  36. 36.

    Urso, J. H. & Gilbertson, L. M. Atom conversion efficiency: a new sustainability metric applied to nitrogen and phosphorus use in agriculture. ACS Sustain. Chem. Eng. 6, 4453–4463 (2018).

    CAS  Article  Google Scholar 

  37. 37.

    Smith, A. M. & Gilbertson, L. M. Rational ligand design to improve agrochemical delivery efficiency and advance agriculture sustainability. ACS Sustain. Chem. Eng. 6, 13599–13610 (2018).

    CAS  Google Scholar 

  38. 38.

    Kottegoda, N. et al. Urea-hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano 11, 1214–1221 (2017).

    CAS  Article  Google Scholar 

  39. 39.

    Yuvaraj, M. & Subramanian, K. S. Controlled-release fertilizer of zinc encapsulated by a manganese hollow core shell. Soil Sci. Plant Nutr. 61, 319–326 (2014).

    Article  Google Scholar 

  40. 40.

    Elmer, W. H. & White, J. C. The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environ. Sci. Nano 3, 1072–1079 (2016).

    CAS  Article  Google Scholar 

  41. 41.

    Dimkpa, C. O., White, J. C., Elmer, W. H. & Gardea-Torresdey, J. Nanoparticle and ionic Zn promote nutrient loading of sorghum grain under low NPK fertilization. J. Agric. Food Chem. 65, 8552–8559 (2017).

    CAS  Article  Google Scholar 

  42. 42.

    Gao, X. et al. CuO nanoparticle dissolution and toxicity to wheat (Triticum aestivum) in rhizosphere soil. Environ. Sci. Technol. 52, 2888–2897 (2018).

    CAS  Article  Google Scholar 

  43. 43.

    Ashfaq, M., Verma, N. & Khan, S. Carbon nanofibers as a micronutrient carrier in plants: efficient translocation and controlled release of Cu nanoparticles. Environ. Sci. Nano 4, 138–148 (2017).

    CAS  Article  Google Scholar 

  44. 44.

    Ghormade, V., Deshpande, M. V. & Paknikar, K. M. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol. Adv. 29, 792–803 (2011).

    CAS  Article  Google Scholar 

  45. 45.

    Avellan, A. et al. Nanoparticle size and coating chemistry control foliar uptake pathways, translocation and leaf-to-rhizosphere transport in wheat. ACS Nano https://doi.org/10.1021/acsnano.8b09781 (2019).

    CAS  Article  Google Scholar 

  46. 46.

    Mastronardi, E., Monreal, C. & Derosa, M. C. Personalized medicine for crops? Opportunities for the application of molecular recognition in agriculture. J. Agric. Food Chem. 66, 6457–6461 (2018).

    CAS  Article  Google Scholar 

  47. 47.

    Suriyaraj, S. P. & Selvakumar, R. Advances in nanomaterial based approaches for enhanced fluoride and nitrate removal from contaminated water. RSC Adv. 6, 10565–10583 (2016).

    CAS  Article  Google Scholar 

  48. 48.

    Zhang, R., Vivanco, J. M. & Shen, Q. The unseen rhizosphere root–soil–microbe interactions for crop production. Curr. Opin. Microbiol. 37, 8–14 (2017).

    Article  Google Scholar 

  49. 49.

    Simonin, M. et al. Negative effects of copper oxide nanoparticles on carbon and nitrogen cycle microbial activities in contrasting agricultural soils and in presence of plants. Front. Microbiol. 9, 3102 (2018).

    Article  Google Scholar 

  50. 50.

    Asadishad, B., Chahal, S., Cianciarelli, V., Zhou, K. & Tufenkji, N. Effect of gold nanoparticles on extracellular nutrient-cycling enzyme activity and bacterial community in soil slurries: role of nanoparticle size and surface coating. Environ. Sci. Nano 4, 907–918 (2017).

    CAS  Article  Google Scholar 

  51. 51.

    Avellan, A. et al. Gold nanoparticle biodissolution by a freshwater macrophyte and its associated microbiome. Nat. Nanotechnol. 13, 1072–1077 (2018).

    CAS  Article  Google Scholar 

  52. 52.

    McGivney, E. et al. Biogenic cyanide production promotes dissolution of gold nanoparticles in soil. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.8b05884 (2019).

    Article  Google Scholar 

  53. 53.

    Anderson, A. J., McLean, J. E., Jacobson, A. R. & Britt, D. W. CuO and ZnO nanoparticles modify interkingdom cell signaling processes relevant to crop production. J. Agric. Food Chem. 66, 6513–6524 (2018).

    CAS  Article  Google Scholar 

  54. 54.

    Wang, W., Vinocur, B. & Altman, A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta 218, 1–14 (2003).

    CAS  Article  Google Scholar 

  55. 55.

    Savary, S., Ficke, A., Aubertot, J. N. & Hollier, C. Crop losses due to diseases and their implications for global food production losses and food security. Food Secur. 4, 519–537 (2012).

    Article  Google Scholar 

  56. 56.

    Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E. & Mittler, R. Abiotic and biotic stress combinations. New Phytol. 203, 32–43 (2014).

    Article  Google Scholar 

  57. 57.

    Kim, J. H., Oh, Y., Yoon, H., Hwang, I. & Chang, Y. S. Iron nanoparticle-induced activation of plasma membrane H+-ATPase promotes stomatal opening in Arabidopsis thaliana. Environ. Sci. Technol. 49, 1113–1119 (2015).

    CAS  Article  Google Scholar 

  58. 58.

    Wang, S., Wang, F. & Gao, S. Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings. Environ. Sci. Pollut. Res. 22, 2837–2845 (2015).

    CAS  Article  Google Scholar 

  59. 59.

    Oliveira, H. C., Gomes, B. C. R., Pelegrino, M. T. & Seabra, A. B. Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants. Nitric Oxide Biol. Chem. 61, 10–19 (2016).

    CAS  Article  Google Scholar 

  60. 60.

    Karny, A., Zinger, A., Kajal, A., Shainsky-Roitman, J. & Schroeder, A. Therapeutic nanoparticles penetrate leaves and deliver nutrients to agricultural crops. Sci. Rep. 8, 7589 (2018).

    Article  Google Scholar 

  61. 61.

    Xin, X. et al. Efficiency of biodegradable and pH-responsive polysuccinimide nanoparticles (PSI-NPs) as smart nanodelivery systems in grapefruit: in vitro cellular investigation. Macromol. Biosci. 18, 1800159 (2018).

    Article  Google Scholar 

  62. 62.

    Sabo-Attwood, T. et al. Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology 6, 353–360 (2012).

    CAS  Article  Google Scholar 

  63. 63.

    Czapar, A. E. & Steinmetz, N. F. Plant viruses and bacteriophages for delivery in medicine and biotechnology. Curr. Opin. Chem. Biol. 38, 108–116 (2017).

    CAS  Article  Google Scholar 

  64. 64.

    Maruyama, C. R. et al. Nanoparticles based on chitosan as carriers for the combined herbicides Imazapic and Imazapyr. Sci. Rep. 6, 19768 (2016).

    CAS  Article  Google Scholar 

  65. 65.

    Prapainop, K. et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 8, 137–143 (2013).

    Article  Google Scholar 

  66. 66.

    Lombi, E., Donner, E., Dusinska, M. & Wickson, F. A One Health approach to managing the applications and implications of nanotechnologies in agriculture. Nat. Nanotechnol. https://doi.org/10.1038/s41565-019-0460-8 (2019).

  67. 67.

    Arvidsson, R. Risk assessments show engineered nanomaterials to be of low environmental concern. Environ. Sci. Technol. 52, 2436–2437 (2018).

    CAS  Article  Google Scholar 

  68. 68.

    Amenta, V. et al. Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regul. Toxicol. Pharmacol. 73, 463–476 (2015).

    Article  Google Scholar 

  69. 69.

    Kah, M., Kookana, R. S., Gogos, A. & Bucheli, T. D. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol. 13, 677–684 (2018).

    CAS  Article  Google Scholar 

  70. 70.

    Falinski, M. M. et al. A framework for sustainable nanomaterial selection and design based on performance, hazard, and economic considerations. Nat. Nanotechnol. 13, 708–714 (2018).

    CAS  Article  Google Scholar 

  71. 71.

    Gilbertson, L. M., Zimmerman, J. B., Plata, D. L., Hutchison, J. E. & Anastas, P. T. Designing nanomaterials to maximize performance and minimize undesirable implications guided by the Principles of Green Chemistry. Chem. Soc. Rev. 44, 5758–5777 (2015).

    CAS  Article  Google Scholar 

  72. 72.

    Clark, J. H., Farmer, T. J., Herrero-Davila, L. & Sherwood, J. Circular economy design considerations for research and process development in the chemical sciences. Green. Chem. 18, 3914–3934 (2016).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

G.V.L. and A.A. thank the US National Science Foundation (NSF) and the Environmental Protection Agency (EPA) under NSF Cooperative Agreement EF-1266252, the Center for the Environmental Implications of NanoTechnology (CEINT) and the NSF (CBET-1530563; Nano for Agriculturally Relevant Materials (NanoFARM)) for supporting this effort. L.M.G. acknowledges support from the Gordon and Betty Moore Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gregory V. Lowry.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Nanotechnology thanks David Britt and Jason White for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lowry, G.V., Avellan, A. & Gilbertson, L.M. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat. Nanotechnol. 14, 517–522 (2019). https://doi.org/10.1038/s41565-019-0461-7

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research